The concept of trophic units in the central nervous system. 1995

L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

The present paper proposes that trophic interplay among cells may represent the final common pathway for both genetic and environmental influences, and hence new criteria for the understanding of central nervous system (CNS) connectivity can be suggested. In particular, trophic signals may make up the common "language" through which genetic and epigenetic influences mold the CNS during development and the adult life. Furthermore, it will put forward the hypothesis that the developmental trophic interplay among cells leads to the formation of trophic units in the adult brain. A trophic unit is defined as the smallest set of cells, within the CNS, which act in a complementary way to support each other's trophism. The trophic units consist of neurons, glial cells, blood vessels, extracellular matrix (ECM). In particular, ECM gives support to the thin elongated cell processes and gives rise to selective chemical bridges between cell surfaces or between cell surfaces and the extracellular milieu. The trophic unit is a plastic device that not only assures neuronal survival, but also operates to adapt neuronal networks to new tasks by controlling extension of neuronal processes, synapse turnover and ECM characteristics. These plastic responses depend on the interplay of all the elements that constitute the trophic units. The concept of trophic unit may help to understand some features of neurodegenerative diseases, for example, the clustering of tangles in the neocortex and in the entorhinal cortex of Alzheimer's patients [corrected].

UI MeSH Term Description Entries
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
January 1989, Sheng li ke xue jin zhan [Progress in physiology],
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
March 1974, Annals of the New York Academy of Sciences,
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
April 2009, Trends in neurosciences,
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
December 1995, Cancer metastasis reviews,
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
May 1978, Arkhiv anatomii, gistologii i embriologii,
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
December 1961, Diseases of the nervous system,
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
January 1990, Comparative biochemistry and physiology. A, Comparative physiology,
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
July 1998, Archives of physiology and biochemistry,
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
January 1996, Ciba Foundation symposium,
L F Agnati, and P Cortelli, and R Pettersson, and K Fuxe
June 1931, Science (New York, N.Y.),
Copied contents to your clipboard!