Analysis of phosphorylation sites of herpes simplex virus type 1 ICP4. 1996

K Xia, and N A DeLuca, and D M Knipe
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

The herpes simplex virus ICP4 protein is required for induction of early and late viral gene transcription as well as for repression of expression of its own gene and several other viral genes. Several electrophoretic forms of ICP4 have been observed, and phosphorylation is thought to contribute to this heterogeneity and possibly to the multiple functions of ICP4. To define the complexity of the site(s) of phosphorylation of ICP4 and to initiate mapping of this site(s), we have performed two-dimensional phosphopeptide mapping of wild-type and mutant forms of ICP4 labeled in infected cells or in vitro. Wild-type ICP4 labeled in infected cells shows a complex pattern of phosphopeptides, and smaller mutant forms of ICP4 show progressively fewer phosphopeptides, arguing that multiple sites on ICP4 are phosphorylated. The serine-rich region of ICP4, residues 175 to 198, was shown to be a site for phosphorylation. Furthermore, the serine-rich region itself or the phosphorylation of this region increases phosphorylation of all phosphopeptides. A mutant ICP4 molecule lacking the serine-rich region showed low levels of phosphorylation by protein kinase A or protein kinase C in vitro. These results suggest that there may be a sequential phosphorylation of ICP4, with phosphorylation of the serine-rich region stimulating phosphorylation of the rest of the molecule. In addition, purified ICP4 showed an associated kinase activity or an autophosphorylation activity with properties different from those of protein kinase A or protein kinase C.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Xia, and N A DeLuca, and D M Knipe
March 1992, Nucleic acids research,
K Xia, and N A DeLuca, and D M Knipe
April 1999, Journal of virology,
K Xia, and N A DeLuca, and D M Knipe
September 2007, Journal of virology,
K Xia, and N A DeLuca, and D M Knipe
June 1987, Nucleic acids research,
K Xia, and N A DeLuca, and D M Knipe
August 2004, The Journal of general virology,
K Xia, and N A DeLuca, and D M Knipe
October 1995, Journal of virology,
K Xia, and N A DeLuca, and D M Knipe
December 1984, Journal of virology,
K Xia, and N A DeLuca, and D M Knipe
April 1997, International journal of oncology,
K Xia, and N A DeLuca, and D M Knipe
December 1996, Virology,
K Xia, and N A DeLuca, and D M Knipe
January 2001, Journal of virology,
Copied contents to your clipboard!