Breakdown of blood pressure and body fluid homeostasis in heart transplant recipients. 1996

R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
Department of Exercise and Sport Sciences, College of Health and Human Performance, University of Florida, Gainesville.

OBJECTIVE This study was designed to investigate disturbances in arterial blood pressure and body fluid homeostasis in stable heart transplant recipients. BACKGROUND Hypertension and fluid retention frequently complicate heart transplantation. METHODS Blood pressure, renal and endocrine responses to acute volume expansion were compared in 10 heart transplant recipients (57 +/- 9 years old [mean +/- SD]) 20 +/- 5 months after transplantation, 6 liver transplant recipients receiving similar doses of cyclosporine (cyclosporine control group) and 7 normal volunteers (normal control subjects). After 3 days of a constant diet containing 87 mEq/24 h of sodium, 0.154 mol/liter saline was infused at 8 ml/kg per h for 4 h. Blood pressure and plasma vasopressin, angiotensin II, aldosterone, atrial natiuretic peptide and renin activity levels were determined before and at 30, 60, 120 and 240 min during the infusion. Urine was collected at 2 and 4 h. Blood pressure, fluid balance hormones and renal function were monitored for 48 h after the infusion. RESULTS Blood pressure did not change in the two control groups but increased in the heart transplant recipients (+15 +/- 8/8 +/- 5 mm Hg) and remained elevated for 48 h (p < or = 0.05). Urine flow and urinary sodium excretion increased abruptly in the control groups sufficient to account for elimination of 86 +/- 9% of the sodium load by 48 h; the increases were blunted (p < or = 0.05) and delayed in the heart transplant recipients, resulting in elimination of only 51 +/- 13% of the sodium load. Saline infusion suppressed vasopressin, renin activity, angiotensin II and aldosterone in the two control groups (p < or = 0.05) but not in the heart transplant recipients. Heart transplant recipients had elevated atrial natriuretic peptide levels at baseline (p < or = 0.05), but relative increases during the infusion were similar to those in both control groups. CONCLUSIONS Blood pressure in heart transplant recipients is salt sensitive. These patients have a blunted diuretic and natriuretic response to volume expansion that may be mediated by a failure to reflexly suppress fluid regulatory hormones. These defects in blood pressure and fluid homeostasis were not seen in liver transplant recipients receiving cyclosporine and therefore cannot be attributed to cyclosporine alone. Abnormal cardiorenal neuroendocrine reflexes, secondary to cardiac denervation, may contribute to salt-sensitive hypertension and fluid retention in heart transplant recipients.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D005260 Female Females
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
December 1986, Federation proceedings,
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
February 2014, Transplantation,
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
August 2014, Journal of cardiac failure,
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
January 2007, Pediatric cardiology,
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
January 1985, The Journal of heart transplantation,
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
December 2014, Hypertension (Dallas, Tex. : 1979),
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
September 2008, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences,
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
October 2014, Transplantation proceedings,
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
May 2012, Transplantation,
R W Braith, and R M Mills, and C S Wilcox, and G L Davis, and C E Wood
January 2014, Clinical and experimental hypertension (New York, N.Y. : 1993),
Copied contents to your clipboard!