Fast activation and inactivation of inositol trisphosphate-evoked Ca2+ release in rat cerebellar Purkinje neurones. 1995

K Khodakhah, and D Ogden
National Institute for Medical Research, Mill Hill, London, UK.

1. Calcium release from stores via inositol trisphosphate (InsP3) activation of intracellular Ca2+ receptor-channels is thought to have a role in regulating the excitability of cerebellar Purkinje neurones. The kinetic characteristics of InsP3 receptor activation in Purkinje neurones are reported here. 2. InsP3 was applied by flash photolysis of caged InsP3 during whole-cell patch clamp. Ca2+ flux into the cytosol was measured with a low-affinity fluorescent Ca2+ indicator and by activation of Ca(2+)-dependent membrane conductance. 3. InsP3 produced Ca2+ release from stores with an initial well-defined delay (mean, 85 ms at 10 microM InsP3), which decreased to less than 20 ms at high InsP3 concentrations. 4. The rate of rise of free [Ca2+], which provides a measure of Ca2+ efflux and InsP3 receptor activation, increased with increasing InsP3 concentration in each cell and had a high absolute value of up to 1400 microM s-1 at 40 microM InsP3. The period of fast efflux was brief, inactivating in 25 ms at low and in 9 ms at high InsP3 concentration. 5. Peak free [Ca2+] was high (mean, 23 microM with a pulse of 40 microM InsP3) and increased with InsP3 concentration up to 80 microM InsP3 tested here. 6. Experiments with a flash-released, stable 5-thio-InsP3 confirm that the low InsP3 sensitivity of Purkinje neurones does not result from metabolism of InsP3. 7. The low functional affinity and fast activation by InsP3 suggest a difference in InsP3 receptor properties from non-neuronal cells tested in the same way. The large Ca2+ efflux and high peak [Ca2] probably result from high InsP3 receptor-channel density. 8. Elevated cytosolic [Ca2+] produced by Ca2+ influx through plasmalemmal Ca2+ channels strongly suppressed InsP3-evoked Ca2+ release from stores. Rapid termination of InsP3-evoked efflux results mainly from inhibition by high [Ca2+]. 9. The fast InsP3 activation kinetics and rapid, strong inactivation by Ca2+ influx suggest that interactions between InsP3-mediated and membrane Ca2+ signalling could occur on a time scale compatible with neuronal excitation.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K Khodakhah, and D Ogden
October 2001, The Journal of physiology,
K Khodakhah, and D Ogden
November 1999, Pflugers Archiv : European journal of physiology,
K Khodakhah, and D Ogden
January 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Khodakhah, and D Ogden
April 2007, Physiological reviews,
K Khodakhah, and D Ogden
August 1993, Current eye research,
K Khodakhah, and D Ogden
January 1986, Biology of the cell,
Copied contents to your clipboard!