Disynaptic group I excitation of synergist ankle extensor motoneurones during fictive locomotion in the cat. 1995

D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
Department of Physiology, University of Manitoba, Winnipeg, Canada.

1. Intracellular recording from medial gastrocnemius (MG) motoneurones was used to examine postsynaptic potentials produced by electrical stimulation of the plantaris nerve at group I strength at rest and during fictive locomotion. Fictive locomotion was evoked by stimulation of the midbrain locomotor region (MLR) in decerebrate cats or in decerebrate, acute low-spinal cats by perineal stimulation following intravenous administration of clonidine and naloxone. 2. In both MLR and spinal fictive locomotor preparations, stimulation of plantaris nerve group I afferents at rest evoked short-latency (< 2 ms) IPSPs in MG motoneurones. During the extensor phase of MLR-evoked locomotion, the same stimulation produced short-latency (1.6-1.8 ms) EPSPs. Such latencies suggest mediation by one interneurone interposed between plantaris nerve group I afferents and MG motoneurones. Non-monosynaptic, short-latency excitation was not seen at rest nor during the flexion phase of the step cycle. 3. Group I EPSPs during the extensor phase of MLR-evoked locomotion were evoked by stimulation at intensities ranging from 1.4-2 times threshold (T). The effectiveness of stimulation intensities < 1.5 T suggests that activation of group II afferents is not required to evoke disynaptic excitation. Selective activation of group Ia afferents by stretches of the Achilles tendon also produced disynaptic EPSPs during extension. 4. During fictive locomotion in spinal animals pretreated with clonidine, short-latency group I EPSPs were not seen but group I IPSPs recorded at rest disappeared or were greatly attenuated. The failure of depolarizing current to reveal group I IPSPs suggests that fictive locomotion involves an inhibition of the inhibitory interneurones that operate at rest. In both clonidine-treated spinal and MLR preparations, trains of stimuli at group I strength evoked longer-latency and slowly rising potentials that were more prominent during the flexor phase of fictive locomotion. 5. These results show a reduction in short-latency group I inhibition of synergists in both MLR and clonidine-treated spinal preparations during fictive locomotion. In addition, activation of group I afferents evokes short-latency excitation of synergists during extension in the MLR preparation. Such excitatory reflexes activated by ankle extensor group Ia and Ib afferents may form an excitatory feedback system, reinforcing on-going extensor activity during the stance phase of the step cycle.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013643 Tarsus, Animal The region in the hindlimb of a quadruped, corresponding to the human ANKLE. Hock,Animal Tarsus,Hocks

Related Publications

D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
June 2000, The Journal of physiology,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
March 2005, The Journal of physiology,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
August 1996, The Journal of physiology,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
August 1995, The Journal of physiology,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
May 1996, Experimental brain research,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
January 1988, Experimental brain research,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
November 1996, Journal of neurophysiology,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
August 2000, The Journal of physiology,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
January 1991, Neuroscience letters,
D A McCrea, and S J Shefchyk, and M J Stephens, and K G Pearson
November 1998, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!