Disynaptic vestibulospinal and reticulospinal excitation in cat lumbosacral motoneurons: modulation during fictive locomotion. 1996

J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
Laboratory of Neural Control, National Institutes of Health, Bethesda, MD 20892-4455, USA.

This study compares some characteristics of the disynaptic excitatory pathways from the lateral vestibular nucleus (LVN) and medial longitudinal fasciculus (MLF) to lumbosacral alpha-motoneurons in the decerebrate cat. We used the spatial facilitation technique to test whether disynaptic LVN and MLF excitatory postsynaptic potentials (EPSPs) are produced by common last-order interneurons in the lumbosacral segments of the spinal cord. Of 77 motoneurons examined, 26 exhibited disynaptic EPSPs from both supraspinal sources. No spatial facilitation was found between LVN and MLF EPSPs in 21 of 24 cells that were adequately tested. In 3 of 23 cells (all flexor motoneurons), some spatial facilitation was found in some but not all trials. These observations suggest that stimulation of the LVN and MLF produces disynaptic EPSPs in motoneurons through largely separate populations of last-order interneurons. Disynaptic MLF and LVN EPSPs showed parallel patterns of modulation during fictive locomotion. Maximal disynaptic EPSP amplitudes occurred during the phase of the step cycle when the recorded motoneuron, whether flexor or extensor, exhibited depolarizing locomotor drive potentials and the corresponding muscle nerve was active. These observations, taken together, suggest that disynaptic LVN and MLF EPSPs are produced in motoneurons by at least four separate populations of segmental last-order excitatory interneurons, with separate populations projecting to flexor versus extensor cells. The results also suggest that the modulation of the disynaptic EPSPs during fictive locomotion is mainly due to premotoneuronal convergence of input from the respective descending systems and from the segmental central pattern generator for locomotion onto common interneurons.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
November 1996, Journal of neurophysiology,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
June 2000, The Journal of physiology,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
January 1989, Experimental brain research,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
September 1995, The Journal of physiology,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
January 1991, Experimental brain research,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
November 1998, Annals of the New York Academy of Sciences,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
January 1990, Experimental brain research,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
March 1992, Brain research,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
January 1988, Experimental brain research,
J P Gossard, and M K Floeter, and A M Degtyarenko, and E S Simon, and R E Burke
June 1993, Journal of neurophysiology,
Copied contents to your clipboard!