In vitro oxidation of vitamins C and E, cholesterol, and thiols in rat brain synaptosomes. 1995

G T Vatassery
Research Service, VA Medical Center, Minneapolis, Minnesota 55417, USA.

Free radical-induced oxidation of vitamins C, E, sulfhydryl compounds, and cholesterol in brain synaptosomes from Fisher 344 rats was studied. The synaptosomes were incubated at 37 degrees C with 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), which undergoes thermal decomposition to yield free radicals. After incubation, the synaptosomes were sedimented, saponified, and extracted with hexane to isolate tocopherol and cholesterol. Ascorbate and tocopherol were assayed by liquid chromatography, cholesterol by gas chromatography, and total sulfhydryls by spectrophotometry. Under the in vitro conditions used in this study, the approximate order for the ease of oxidation of the various compounds was: ascorbate >>tocopherol > sulfhydryl compounds >>> cholesterol. However, tocopherol and sulfhydryl oxidation occurred even before all of the ascorbate had been consumed. Therefore, the fate of a specific antioxidant at a particular cellular location cannot be predicted with complete accuracy using the in vitro order for ease of oxidation shown here. Ascorbate may play a major role in protecting brain against oxidative damage because: (i) ascorbate concentration is high in brain, (ii) it can regenerate vitamin E from its radical oxidation product, and (iii) it is one of the first antioxidants to be consumed during oxidative reactions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000578 Amidines Derivatives of oxoacids RnE(
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G T Vatassery
January 1996, Vitamins and hormones,
G T Vatassery
December 1993, Journal of the American College of Nutrition,
G T Vatassery
January 1985, Journal of neuroscience research,
G T Vatassery
February 2004, Clinica chimica acta; international journal of clinical chemistry,
G T Vatassery
August 1970, Biochemical and biophysical research communications,
G T Vatassery
August 2017, Experimental gerontology,
G T Vatassery
February 2012, Toxicology and industrial health,
Copied contents to your clipboard!