In vivo protein synthesis in developing hearts of normal and cardiac mutant axolotls (Ambystoma mexicanum). 1995

N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
SUNY Health Science Center, Department of Anatomy & Cell Biology, Syracuse 13210, USA.

Recessive mutant gene c in axolotls causes a failure of the hearts of affected embryos to function. The mutant hearts (c/c) lack organized sarcomeric myofibrils. The present study was undertaken to determine the overall pattern of in vivo protein synthesis and subsequent accumulation of the newly synthesized proteins for a 24-h period in normal (+/+ or +/c) and cardiac mutant (c/c) axolotl hearts at various stages of development. Additionally, selected cytoskeletal/myofibrillar proteins were analyzed in detail for their synthesis during heart development. For such analyses, the hearts were radiolabeled with 35S-methionine for 24 h and subjected to SDS-PAGE and autoradiography. Quantitative densitometric analyses of the bands show that, even though the overall protein pattern is similar in normal and mutant heart tissues, a general reduction in the synthesis of the proteins in mutant hearts is observed even at the earlier stages of development (stages 35-36 and 37-38). Synthesis and accumulation of most of the proteins is significantly inhibited in mutant hearts at later stages (stages 41-42). Tropomyosin synthesis in mutant hearts is at a level of only 72.6% of that in normal embryonic hearts at stage 35. The synthesis and the accumulation of the tropomyosin in mutant hearts decreases further with increasing age until the protein essentially stops being synthesized by stage 41.

UI MeSH Term Description Entries
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
December 1994, The International journal of developmental biology,
N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
June 1982, Journal of muscle research and cell motility,
N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
July 1991, The Anatomical record,
N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
August 1973, Developmental biology,
N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
February 1980, Journal of embryology and experimental morphology,
N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
February 1996, Developmental dynamics : an official publication of the American Association of Anatomists,
N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
September 1989, Journal of morphology,
N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
November 1988, The American journal of anatomy,
N Erginel-Unaltuna, and D K Dube, and D R Robertson, and L F Lemanski
April 1990, The Journal of experimental zoology,
Copied contents to your clipboard!