Analysis of the three-dimensional distributions of alpha-actinin, ankyrin, and filamin in developing hearts of normal and cardiac mutant axolotls (Ambystoma mexicanum). 1997

S F Lemanski, and C P Kovacs, and L F Lemanski
Department of Anatomy and Cell Biology, SUNY Health Science Center at Syracuse, New York 13210, USA.

alpha-Actinin is an actin binding protein that assists in the stabilization of the plasma membrane and helps to fix organelles in position in a variety of cell types. In muscle, it is a major component of the Z-lines of organized myofibrils. Ankyrin binds to various elements of the cytoskeletal system including microtubules, microfilaments, and intermediate filaments and may help to anchor these structures to the cell membrane. Filamin is a well-characterized actin-associated protein first isolated from chicken smooth muscle. In addition, filamin is a gel-forming protein which aids in the formation of a loose, yet thick, network of actin filaments. These proteins work together, in conjunction with other cytoskeletal proteins, to permit the contractions of heart muscle cells in vertebrates. In a unique strain of the axolotls (Ambystoma mexicanum) a simple recessive mutation, designated by gene c, results in an incomplete differentiation of the hearts of affected embryos. Although the mutant (c/c) embryos form hearts, they do not beat because of a failure in the formation of organized sarcomeric myofibrils. The current study was undertaken to examine the three-dimensional distributions of three different contractile-cytoskeletal proteins (alpha-actinin, ankyrin, and filamin) during myofibrillogenesis in normal and mutant hearts from early heart-beat stage 37 through advanced embryonic stage 42. Our results demonstrate that the contractile proteins become increasingly better organized in normal hearts as development progresses. In mutant hearts, although the proteins are present in almost normal amounts, they fail to form normally organized myofibrils.

UI MeSH Term Description Entries
D008297 Male Males
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D003285 Contractile Proteins Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena. Contractile Protein,Protein, Contractile,Proteins, Contractile
D005260 Female Females
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006330 Heart Defects, Congenital Developmental abnormalities involving structures of the heart. These defects are present at birth but may be discovered later in life. Congenital Heart Disease,Heart Abnormalities,Abnormality, Heart,Congenital Heart Defect,Congenital Heart Defects,Defects, Congenital Heart,Heart Defect, Congenital,Heart, Malformation Of,Congenital Heart Diseases,Defect, Congenital Heart,Disease, Congenital Heart,Heart Abnormality,Heart Disease, Congenital,Malformation Of Heart,Malformation Of Hearts
D000185 Actinin A protein factor that regulates the length of R-actin. It is chemically similar, but immunochemically distinguishable from actin. alpha-Actinin,Eu-Actinin,beta-Actinin,Eu Actinin,alpha Actinin,beta Actinin
D000558 Ambystoma mexicanum A salamander found in Mexican mountain lakes and accounting for about 30 percent of the urodeles used in research. The axolotl remains in larval form throughout its life, a phenomenon known as neoteny. Axolotl,Mexican Salamander,Ambystoma mexicanums,Axolotls,Salamander, Mexican,mexicanums, Ambystoma

Related Publications

S F Lemanski, and C P Kovacs, and L F Lemanski
February 1980, Journal of embryology and experimental morphology,
S F Lemanski, and C P Kovacs, and L F Lemanski
December 1994, The International journal of developmental biology,
S F Lemanski, and C P Kovacs, and L F Lemanski
January 1995, Cellular & molecular biology research,
S F Lemanski, and C P Kovacs, and L F Lemanski
June 1982, Journal of muscle research and cell motility,
S F Lemanski, and C P Kovacs, and L F Lemanski
July 1991, The Anatomical record,
S F Lemanski, and C P Kovacs, and L F Lemanski
August 1973, Developmental biology,
S F Lemanski, and C P Kovacs, and L F Lemanski
November 1988, The American journal of anatomy,
S F Lemanski, and C P Kovacs, and L F Lemanski
February 1996, Developmental dynamics : an official publication of the American Association of Anatomists,
S F Lemanski, and C P Kovacs, and L F Lemanski
April 1990, The Journal of experimental zoology,
Copied contents to your clipboard!