Differential mRNA decay within the transfer operon of plasmid R1: identification and analysis of an intracistronic mRNA stabilizer. 1996

G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
Institut für Mikrobiologie, Karl-Franzens-Universität Graz, Graz, Austria.

Processing of the transfer operon mRNA of the conjugative resistance plasmid R1-19 results in the accumulation of stable traA mRNAs. The stable traA transcripts found in vivo have identical 3' ends within downstream traL sequences, but vary at their 5' ends. The 3' ends determined coincide with the 3' base of a predicted large clover-leaf-like RNA secondary structure. Here we demonstrate that this putative RNA structure, although part of a coding sequences, stabilizes the upstream traA mRNA very efficiently. We also show that the 3' ends of the stable mRNAs are formed posttranscriptionally and not by transcription termination. Half-life determinations reveal the same half-lives of 13 +/- 2 min for the traA mRNAs transcribed from hybrid lac-traAL-cat test plasmids, the R1-19 plasmid, and the F plasmid. Protein expression experiments demonstrate that the processed stable traA mRNA is translationally active. Partial deletions of sequences corresponding to the predicted secondary structure within the traL coding region drastically reduce the chemical and functional half-life of the traA mRNA. The results presented here unambiguously demonstrate that the proposed secondary structure acts as an efficient intracistronic mRNA stabilizer.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA

Related Publications

G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
February 1989, Nucleic acids research,
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
May 1990, Journal of bacteriology,
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
March 2011, Plasmid,
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
January 1989, Gene,
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
December 1987, Cell,
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
November 1987, Journal of bacteriology,
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
March 1986, Molecular & general genetics : MGG,
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
August 1984, The EMBO journal,
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
November 1999, RNA (New York, N.Y.),
G Koraimann, and K Teferle, and R Mitteregger, and S Wagner, and G Högenauer
November 2002, FEMS microbiology ecology,
Copied contents to your clipboard!