Animal models for complement deficiencies. 1995

M M Frank
Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA.

The complement system plays a key role in host defense and in the development of autoimmunity. Three types of animal models of complement-mediated disease have traditionally been used: they involve normal animals, animals with spontaneously arising genetic deficiency, and animals treated with complement-inactivating agents. All of these approaches have had partial success in our attempts to understand complement mechanisms. Most animal models of genetic deficiency have been studied relatively little, as the availability of such animals is limited. C4, C2, and partial C3 deficiency in the guinea pig are well characterized, although only C4 deficiency in the guinea pig has been exclusively studied. C3 deficiency in the dog and C6 deficiency in the rabbit are well described, although studies are limited in number. C6 deficiency in the rat has been described recently and C5 deficiency in inbred mice strains has been studied fairly extensively. Factor H deficiency in the Yorkshire pig has also been described. Relatively few agents that inhibit complement are in use. Most widely used in animal studies is cobra venom factor. This inactivates the alternative complement pathway in the fluid phase and thereby depletes complement protein levels. The antigenicity of this protein, purified from the venom of cobras, limits its duration of use in most animal models. Complement-inhibiting agents are rare and, as yet, not widely used. We recently described the use of intravenous immune globulin for inhibiting complement in animal studies and present data on its use in animals, including discordant xenograft rejection, and its potential use in human disease. New developments in molecular biology provide the potential for a vast new array of deficiency models. A limited number of laboratories are actively engaged in the production of animals with inactivated genes. For example, gene knockout mice with no C3, and with no factor B, have been generated. Several complement control proteins have been prepared by genetic molecular biological techniques. Most promising among these is CR1, which limits complement damage in several animal models. Transgenic animals, which complement regulatory proteins expressed on their cells, have been prepared. As complement control proteins tend to be more efficient at regulating complement of the same species type as the regulatory protein, these animals may be useful in such areas as xenograft transplantation. The various animal models are reviewed and their potential application to understanding of human disease is emphasized.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D010215 Papio A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of five named species: PAPIO URSINUS (chacma baboon), PAPIO CYNOCEPHALUS (yellow baboon), PAPIO PAPIO (western baboon), PAPIO ANUBIS (or olive baboon), and PAPIO HAMADRYAS (hamadryas baboon). Members of the Papio genus inhabit open woodland, savannahs, grassland, and rocky hill country. Some authors consider MANDRILLUS a subgenus of Papio. Baboons,Baboons, Savanna,Savanna Baboons,Baboon,Baboon, Savanna,Papios,Savanna Baboon
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003169 Complement Inactivator Proteins Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors. Complement Cytolysis Inhibiting Proteins,Complement Cytolysis Inhibitor Proteins,Complement Inactivating Proteins,Serum Complement Inactivators,Complement Inactivators, Serum,Inactivating Proteins, Complement,Inactivator Proteins, Complement,Inactivators, Serum Complement,Proteins, Complement Inactivating,Proteins, Complement Inactivator
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014183 Transplantation, Heterologous Transplantation between animals of different species. Xenotransplantation,Heterograft Transplantation,Heterografting,Heterologous Transplantation,Xenograft Transplantation,Xenografting,Transplantation, Heterograft,Transplantation, Xenograft
D016756 Immunoglobulins, Intravenous Immunoglobulin preparations used in intravenous infusion, containing primarily IMMUNOGLOBULIN G. They are used to treat a variety of diseases associated with decreased or abnormal immunoglobulin levels including pediatric AIDS; primary HYPERGAMMAGLOBULINEMIA; SCID; CYTOMEGALOVIRUS infections in transplant recipients, LYMPHOCYTIC LEUKEMIA, CHRONIC; Kawasaki syndrome, infection in neonates, and IDIOPATHIC THROMBOCYTOPENIC PURPURA. Antibodies, Intravenous,Human Intravenous Immunoglobulin,IV Immunoglobulin,IVIG,Intravenous Antibodies,Intravenous Immunoglobulin,Intravenous Immunoglobulins,Alphaglobin,Endobulin,Flebogamma DIF,Gamimmune,Gamimmune N,Gamimune,Gamimune N,Gammagard,Gammonativ,Gamunex,Globulin-N,IV Immunoglobulins,Immune Globulin Intravenous (Human),Immune Globulin, Intravenous,Immunoglobulins, Intravenous, Human,Intraglobin,Intraglobin F,Intravenous IG,Intravenous Immunoglobulins, Human,Iveegam,Modified Immune Globulin (Anti-Echovirus Antibody),Privigen,Sandoglobulin,Venimmune,Venoglobulin,Venoglobulin-I,Globulin N,Human Intravenous Immunoglobulins,Immunoglobulin, Human Intravenous,Immunoglobulin, IV,Immunoglobulin, Intravenous,Immunoglobulins, Human Intravenous,Immunoglobulins, IV,Intravenous Immune Globulin,Intravenous Immunoglobulin, Human,Venoglobulin I

Related Publications

M M Frank
January 1997, Seminars in liver disease,
M M Frank
May 1975, The British journal of dermatology,
M M Frank
January 1992, Annual review of immunology,
M M Frank
January 1994, Duodecim; laaketieteellinen aikakauskirja,
M M Frank
January 2020, Vnitrni lekarstvi,
M M Frank
June 2001, Molecular biotechnology,
M M Frank
October 1971, Lille medical : journal de la Faculte de medecine et de pharmacie de l'Universite de Lille,
Copied contents to your clipboard!