Effects of age on messenger RNA expression of glucocorticoid, thyroid hormone, androgen, and estrogen receptors in postmortem human hippocampus. 1995

H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
Department of Neurology Iwate Medical University, Morioka, Japan.

We studied messenger RNA (mRNA) expressions of receptors for glucocorticoid (GR), thyroid hormone (TR), androgen (AR), and estrogen (ER) and their changes with age in the hippocampal subregions in postmortem human brain. In situ hybridization was done with biotin-labeled antisense synthetic oligonucleotide probes. About 80% or more of the pyramidal neurons in the hippocampal subregions expressed mRNAs for individual receptors in the brains of subjects younger than 65. The ratio of mRNA-containing neuron density to total neuron density significantly decreased with age for GR in CA1 and CA3, and for AR in CA1. Non-significant trends in the reduction with age in the ratio of ER mRNA-containing neurons in CA1 and the ratio of GR mRNA-containing neurons in the hilus also were found. Age-related reductions in nuclear receptor protein mRNA expression in neurons in the hippocampal subfields may be important in the impairments of cognition, emotion, and responses to acute stress in the aged.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011988 Receptors, Thyroid Hormone Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively. Diiodotyrosine Receptors,Receptors, Diiodotyrosine,Receptors, Thyroxine,Receptors, Triiodothyronine,T3 Receptors,T4 Receptors,Thyroid Hormone Receptors,Thyroxine Receptors,Triiodothyronine Receptors,DIT Receptors,Diiodotyrosine Receptor,MIT Receptors,Monoiodotyrosine Receptors,Receptors, DIT,Receptors, MIT,Receptors, Monoiodotyrosine,Receptors, T3,Receptors, T4,T3 Receptor,T4 Receptor,Thyroid Hormone Receptor,Thyroxine Receptor
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell

Related Publications

H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
October 1991, Brain research,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
January 1998, The Journal of endocrinology,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
January 2022, Toxicology and applied pharmacology,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
August 2022, Chemico-biological interactions,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
May 1977, Proceedings of the National Academy of Sciences of the United States of America,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
January 2010, International journal of dermatology,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
August 1998, International journal of molecular medicine,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
July 2005, The Journal of clinical endocrinology and metabolism,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
November 1995, Journal of neuroendocrinology,
H Tohgi, and K Utsugisawa, and M Yamagata, and M Yoshimura
October 1988, Endocrinologia japonica,
Copied contents to your clipboard!