Thyroid hormone effects on androgen receptor messenger RNA expression in rat Sertoli and peritubular cells. 1998

N K Arambepola, and D Bunick, and P S Cooke
Department of Veterinary Biosciences, University of Illinois, Urbana 61801, USA.

Postnatal Sertoli cell maturation is characterized by a pronounced rise in androgen receptor (AR) expression, which increases several fold between birth and adulthood. Since both 3,3',5-triiodothyronine (T3) and FSH regulate Sertoli cell proliferation and differentiation, we have determined the effects of T3 and FSH on AR mRNA expression in cultured Sertoli cells from 5-day-old rats. These cultures contain 5-9% peritubular cells, which also express AR mRNA. To insure that the observed T3 responses did not result from peritubular cells, we examined T3 effects on AR mRNA expression in cultured 20-day-old Sertoli cells (which contain minimal peritubular contamination) and peritubular cells, and measured thyroid hormone receptor (TR) mRNA expression in both of these cell types. Sertoli cells from 5- and 20-day-old rat testes were grown in serum-free medium alone (controls) or with ovine FSH (100 ng/ml) and/or T3 (100 nM) for 4 days. Peritubular cells purified from 20-day-old rat testes were grown in serum-containing medium for 8 days. These cells were split 1:4, and grown an additional 8 days, the last 4 days in serum-free medium with or without T3. TR and AR mRNA levels in all cultures were determined by Northern blotting. AR mRNA levels in 5- and 20-day-old cultured Sertoli cells were significantly (P < 0.05) increased by both T3 and FSH alone. Furthermore, AR mRNA levels in Sertoli cells treated with T3 and FSH were greater than with either alone. TR mRNA expression was detected in cultured peritubular cells, but TR mRNA levels in these cells were only approximately 30% of that seen in 20-day-old cultured Sertoli cells. In contrast to Sertoli cells, T3 did not affect peritubular AR mRNA expression. These results indicate that T3 is an important regulator of the postnatal Sertoli cell AR mRNA increase. The additive effects of maximally stimulatory doses of FSH and T3 suggest these hormones work through different mechanisms to increase AR mRNA. TR mRNA expression in peritubular cells indicates these cells may be direct T3 targets, though the function of T3 in these cells is unknown.

UI MeSH Term Description Entries
D008297 Male Males
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012671 Seminiferous Tubules The convoluted tubules in the TESTIS where sperm are produced (SPERMATOGENESIS) and conveyed to the RETE TESTIS. Spermatogenic tubules are composed of developing germ cells and the supporting SERTOLI CELLS. Seminiferous Tubule,Tubule, Seminiferous,Tubules, Seminiferous
D012708 Sertoli Cells Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete the ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER. Sertoli Cell,Cell, Sertoli,Cells, Sertoli
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle

Related Publications

N K Arambepola, and D Bunick, and P S Cooke
October 1991, Biology of reproduction,
N K Arambepola, and D Bunick, and P S Cooke
January 1990, Journal of andrology,
N K Arambepola, and D Bunick, and P S Cooke
March 1994, The Journal of endocrinology,
N K Arambepola, and D Bunick, and P S Cooke
November 2001, Blood,
N K Arambepola, and D Bunick, and P S Cooke
February 1995, European journal of endocrinology,
N K Arambepola, and D Bunick, and P S Cooke
January 1996, The Journal of endocrinology,
Copied contents to your clipboard!