Relationship between the adaptive response to oxidants and stable menadione-resistance in Chinese hamster ovary cell lines. 1996

K A Vallis, and C R Wolf
Imperial Cancer Research Fund Molecular Pharmacology Unit, Ninewells Hospital and Medical School, Dundee, UK.

To study the genetic changes that generate resistance to oxidants in mammalian cells, we isolated cell lines that are resistant to the naphthoquinone, menadione, from a Chinese hamster ovary cell line (CHO-K1). Corss-resistance to other oxidants (H2O2 and sodium arsenite) was observed. The IC50 of menadione (measured using a clonogenic assay) was 7.8-fold greater for one menadione-resistant cell line (MRc40) than for CHO-K1. Acquisition of resistance was associated with elevations of 2- and 3.2-fold in the low molecular weight thiols, glutathione and cysteine, respectively. Further, characterization demonstrated significant changes in the expression of enzymes associated with the oxidative stress response and with protection against oxidizing agents. The expressions of glutathione S-transferase pi (GST pi), glutathione peroxidase (GPX) and heme oxygenase mRNAs were all increased. Accompanying these changes the enzyme activity of GST pi, GPX and gamma-glutamyl transpeptidase (gamma-GT) were also elevated. Interestingly, in a revertant cell line heme oxygenase overexpression approached wild-type levels. Intriguingly, similar changes in gene expression seen in the menadione-resistant cells were also observed in wild-type cells following transient oxidative stress, indicating that the observed changes in the resistant line may be due to the immortalization of a normally transient adaptive stress response.

UI MeSH Term Description Entries
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014812 Vitamin K A lipid cofactor that is required for normal blood clotting. Several forms of vitamin K have been identified: VITAMIN K 1 (phytomenadione) derived from plants, VITAMIN K 2 (menaquinone) from bacteria, and synthetic naphthoquinone provitamins, VITAMIN K 3 (menadione). Vitamin K 3 provitamins, after being alkylated in vivo, exhibit the antifibrinolytic activity of vitamin K. Green leafy vegetables, liver, cheese, butter, and egg yolk are good sources of vitamin K.
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D016877 Oxidants Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION). Oxidant,Oxidizing Agent,Oxidizing Agents,Agent, Oxidizing,Agents, Oxidizing
D017670 Sodium Compounds Inorganic compounds that contain sodium as an integral part of the molecule. Compounds, Sodium
D018053 Arsenites Inorganic salts or organic esters of arsenious acid.
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

K A Vallis, and C R Wolf
September 2015, Biotechnology letters,
K A Vallis, and C R Wolf
January 2001, In vitro cellular & developmental biology. Animal,
K A Vallis, and C R Wolf
February 2011, Biotechnology and bioengineering,
K A Vallis, and C R Wolf
May 1976, The Journal of biological chemistry,
K A Vallis, and C R Wolf
March 1990, Cell biology international reports,
Copied contents to your clipboard!