Retardation of phenotypic transition of rabbit arterial smooth muscle cells in three-dimensional primary culture. 1996

M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
Department of Cell Biology, Tokyo Metropolitan Institute of Gerontology, Japan.

Three-dimensional gel culture systems represent conditions that mimic the differentiated state of mesenchymal cells in vivo. We examined gel contraction, cell growth, and phenotypic modulation of rabbit arterial SMC in three-dimensional gel culture. The gel contraction rate was dependent on the collagen type; that is, the contraction by freshly isolated SMC was faster and more pronounced in type I collagen than in type III collagen. In contrast, the phenotypic modulation of SMC was independent of collagen type. The major portion of cells in both type I and III collagens with growth factors underwent transition from a contractile (G0 phase) to a synthetic phenotype (G1B phase), but this transition was clearly delayed compared with that on collagens. The cells had hardly begun DNA synthesis in either collagen type and failed to proliferate even after 10 days of culture. These results indicate that collagen type is important in gel contraction by vascular SMC, while the organization of collagen fibrils (two-dimensional vs three-dimensional) is more critical in the phenotypic transition and proliferation of these cells. However, the more specific organization of extracellular matrix than the collagen gel culture system may be necessary to maintain the contractile phenotype of SMC.

UI MeSH Term Description Entries
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.

Related Publications

M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
May 1995, Experimental cell research,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
January 1992, Experimental cell research,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
April 1997, Histochemistry and cell biology,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
July 1989, Journal of cell science,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
January 1990, Annals of the New York Academy of Sciences,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
May 1984, Scandinavian journal of clinical and laboratory investigation,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
August 1991, Pflugers Archiv : European journal of physiology,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
January 1981, Artery,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
March 2018, Cells,
M Yamamoto, and H Nakamura, and M Yamato, and M Aoyagi, and K Yamamoto
October 2008, Annals of biomedical engineering,
Copied contents to your clipboard!