Effect of sustained tension on bladder smooth muscle cells in three-dimensional culture. 2008

Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC 29634-0905, USA.

Previous studies demonstrated that bladder cells respond to changes in their mechanical environments by exhibiting alterations in cellular functions, such as hypertrophy or fibrosis. In the present study, we hypothesize that changes in smooth muscle cell (SMC) behavior triggered by mechanical stimuli may represent a phenotypic shift between contractile and synthetic phenotypes. Using a custom-made device, rat bladder SMCs were cultured in three-dimensional (3-D) collagen gels and exposed to sustained tension. When compared to no-tension controls, SMCs exposed to tension exhibited significantly (p < 0.05) higher expression of alpha-smooth muscle actin (alpha-SMA), while cell population density was similar in both groups. In addition, both mean and median aspect ratios of SMCs in 3-D collagen constructs exposed to tension were significantly (p < 0.05) greater than those of cells cultured under no externally applied tension, indicating that there are more elongated, spindle-shaped cells in the tension group. These SMCs in 3-D cultures exposed to tension also exhibited cellular alignment along the direction of applied tension. Since contractile SMCs are known to exhibit greater expression of phenotypic marker proteins as well as a more elongated morphology, we concluded that sustained tension on cells is an important mechanical stimulus for maintenance of the contractile phenotype of bladder SMCs in vitro.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005260 Female Females
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical

Related Publications

Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
March 1986, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
March 2004, The Journal of urology,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
April 2010, Urology,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
May 1996, Experimental cell research,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
October 2012, The Journal of urology,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
June 2003, Tissue engineering,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
October 2013, Experimental cell research,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
May 2004, The Journal of heart valve disease,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
January 1993, The Journal of urology,
Tiffany Roby, and Shawn Olsen, and Jiro Nagatomi
November 1996, International journal of radiation oncology, biology, physics,
Copied contents to your clipboard!