DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. 1996

C R Chen, and M Malik, and M Snyder, and K Drlica
Public Health Research Institute, New York, NY 10016, USA.

DNA gyrase, the bacterial enzyme that supercoils DNA, is trapped on chromosomal DNA by the 4-quinolone compounds, as drug-gyrase complexes that contain DNA breaks. Examination of chromosomal DNA extracted from Escherichia coli indicated that bacteriostatic concentrations of oxolinic acid trap gyrase and block DNA synthesis without releasing broken DNA from gyrase-DNA complexes. Release, detected as free rotation of DNA in the presence of an intercalating dye, occurred only at high, bactericidal oxolinic acid concentrations. Release of DNA breaks and cell death were both blocked by chloramphenicol, an inhibitor of protein synthesis, suggesting that synthesis of additional protein activity is required to free the DNA ends. Ciprofloxacin, a more potent quinolone, released DNA breaks and killed cells even in the presence of chloramphenicol. It is proposed that this second, chloramphenicol-insensitive mode for release of DNA breaks and cell killing arises from dissociation of gyrase subunits. Ciprofloxacin also killed a gyrase (gyrA) mutant resistant to the prototype of quinolone, nalidixic acid, and created complexes on DNA detected by DNA fragmentation. This lethal effect of ciprofloxacin was eliminated by additional mutations mapping in parC, one of the two genes encoding topoisomerase IV. Thus, the fluoroquinolone compounds have two intracellular targets. In the absence of the gyrA mutation, the parC (CipR) allele did not by itself confer resistance to ciprofloxacin, indicating that gyrase is the major quinolone target in E. coli. These findings provide a molecular explanation for quinolone action in bacteria and a new way to study topoisomerase IV-chromosome interactions.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010093 Oxolinic Acid Synthetic antimicrobial related to NALIDIXIC ACID and used in URINARY TRACT INFECTIONS. Gramurin,Sodium Oxolinate,Acid, Oxolinic,Oxolinate, Sodium
D002939 Ciprofloxacin A broad-spectrum antimicrobial carboxyfluoroquinoline. Bay-09867,Ciprinol,Cipro,Ciprofloxacin Hydrochloride,Ciprofloxacin Hydrochloride Anhydrous,Ciprofloxacin Monohydrochloride Monohydrate,Anhydrous, Ciprofloxacin Hydrochloride,Bay 09867,Bay09867,Hydrochloride Anhydrous, Ciprofloxacin,Hydrochloride, Ciprofloxacin,Monohydrate, Ciprofloxacin Monohydrochloride,Monohydrochloride Monohydrate, Ciprofloxacin
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D015363 Quinolones A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID. Ketoquinoline,Ketoquinolines,Oxoquinoline,Oxoquinolines,Quinolinone,Quinolinones,Quinolone

Related Publications

C R Chen, and M Malik, and M Snyder, and K Drlica
June 1979, Journal of molecular biology,
C R Chen, and M Malik, and M Snyder, and K Drlica
May 1988, Journal of molecular biology,
C R Chen, and M Malik, and M Snyder, and K Drlica
May 2018, European journal of medicinal chemistry,
C R Chen, and M Malik, and M Snyder, and K Drlica
September 1997, Microbiology and molecular biology reviews : MMBR,
C R Chen, and M Malik, and M Snyder, and K Drlica
August 2000, Antimicrobial agents and chemotherapy,
C R Chen, and M Malik, and M Snyder, and K Drlica
May 2013, Bioorganic & medicinal chemistry letters,
C R Chen, and M Malik, and M Snyder, and K Drlica
January 1998, Antimicrobial agents and chemotherapy,
C R Chen, and M Malik, and M Snyder, and K Drlica
March 2021, Science advances,
C R Chen, and M Malik, and M Snyder, and K Drlica
September 2017, Nucleic acids research,
C R Chen, and M Malik, and M Snyder, and K Drlica
July 2016, The Journal of antimicrobial chemotherapy,
Copied contents to your clipboard!