Probing the cytochrome c peroxidase-cytochrome c electron transfer reaction using site specific cross-linking. 1996

H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
Department of Molecular Biology, University of California at Irvine, 92717, USA.

Engineered cysteine residues in yeast cytochrome c peroxidase (CCP) and yeast iso-1-cytochrome c have been used to generate site specifically cross-linked peroxidase-cytochrome c complexes for the purpose of probing interaction domains and the intramolecular electron transfer reaction. Complex 2 was designed earlier [Pappa, H.S., & Poulos, T.L. (1995) Biochemistry 34, 6573-6580] to mimic the known crystal structure of the peroxidase-cytochrome c noncovalent complex [Pelletier, H., & Kraut, J. (1992) Science 258, 1748-1755]. Complex 3 was designed such that cytochrome c is tethered to a region of the peroxidase near Asp148 which has been suggested to be a second site of interaction between the peroxidase and cytochrome c. Using stopped flow methods, the rate at which the ferrocytochrome c covalently attached to the peroxidase transfers an electron to peroxidase compound I is estimated to be approximately 0.5-1 s-1 in complex 3 and approximately 800 s-1 in complex 2. In both complexes the Trp191 radical and not the Fe4+=O oxyferryl center of compound I is reduced. Conversion of Trp191 to Phe slows electron transfer about 10(3) in complex 2. Steady state kinetic measurements show that complex 3 behaves like the wild type enzyme when either horse heart or yeast ferrocytochrome c is used as an exogenous substrate, indicating that the region blocked in complex 3 is not a functionally important interaction site. In contrast, complex 2 is inactive toward horse heart ferrocytochrome c at all ionic strengths tested and yeast ferrocytochrome c at high ionic strengths. Only at low ionic strengths and low concentrations of yeast ferrocytochrome c does complex 2 give wild type enzyme activity. This observation indicates that in complex 2 the primary site of interaction of CCP with horse heart and yeast ferrocytochrome c at high ionic strengths is blocked. The relevance of these results to the pathway versus distance models of electron transfer and to the interaction domains between peroxidase and cytochrome c is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003578 Cytochrome-c Peroxidase A hemeprotein which catalyzes the oxidation of ferrocytochrome c to ferricytochrome c in the presence of hydrogen peroxide. EC 1.11.1.5. Cytochrome Peroxidase,Cytochrome c-551 Peroxidase,Cytochrome c 551 Peroxidase,Cytochrome c Peroxidase,Peroxidase, Cytochrome,Peroxidase, Cytochrome c-551,Peroxidase, Cytochrome-c
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
April 1985, The Journal of biological chemistry,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
June 1995, Journal of bioenergetics and biomembranes,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
September 1986, Biochemical and biophysical research communications,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
October 1993, Biochemistry,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
May 1996, The Biochemical journal,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
March 2002, Biochemistry,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
April 2004, Proceedings of the National Academy of Sciences of the United States of America,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
October 1978, Biochimica et biophysica acta,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
January 1988, Progress in clinical and biological research,
H S Pappa, and S Tajbaksh, and A J Saunders, and G J Pielak, and T L Poulos
May 1995, Biochemical Society transactions,
Copied contents to your clipboard!