CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. 1996

K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
Department of Pathology, Cambridge University, United Kingdom.

The CD45 transmembrane glycoprotein has been shown to be a protein phosphotyrosine phosphatase and to be important in signal transduction in T and B lymphocytes. We have employed gene targeting to create a strain of transgenic mice that completely lacks expression of all isoforms of CD45. The spleens from CD45-null mice contain approximately twice the number of B cells and one fifth the number of T cells found in normal controls. The increase in B cell numbers is due to the specific expansion of two B cell subpopulations that express high levels of immunoglobulin (IgM) staining. T cell development is significantly inhibited in CD45-null animals at two distinct stages. The efficiency of the development of CD4-CD8- thymocytes into CD4+ CD8+ thymocytes is reduced by twofold, subsequently the frequency of successful maturation of the double positive population into mature, single positive thymocytes is reduced by a further four- to fivefold. In addition, we demonstrate that CD45-null thymocytes are severely impaired in their apoptotic response to cross-linking signals via T cell receptor (TCR) in fetal thymic organ culture. In contrast, apoptosis can be induced normally in CD45-null thymocytes by non-TCR-mediated signals. Since both positive and negative selection require signals through the TCR complex, these findings suggest that CD45 is an important regulator of signal transduction via the TCR complex at multiple stages of T cell development. CD45 is absolutely required for the transmission of mitogenic signals via IgM and IgD. By contrast, CD45-null B cells proliferate as well as wild-type cells to CD40-mediated signals. The proliferation of B cells in response to CD38 cross-linking is significantly reduced but not abolished by the CD45-null mutation. We conclude that CD45 is not required at any stage during the generation of mature peripheral B cells, however its loss reveals a previously unrecognized role for CD45 in the regulation of certain subpopulations of B cells.

UI MeSH Term Description Entries
D007072 Immunoglobulin D An immunoglobulin which accounts for less than 1% of plasma immunoglobulin. It is found on the membrane of many circulating B LYMPHOCYTES. IgD,IgD1,IgD2
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011946 Receptors, Antigen Molecules on the surface of B- and T-lymphocytes that recognize and combine with specific antigens. Antigen Receptors,Antigen Receptor,Receptor, Antigen

Related Publications

K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
April 2002, Journal of immunology (Baltimore, Md. : 1950),
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
June 1989, The Journal of experimental medicine,
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
August 1994, Seminars in immunology,
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
October 2005, Immunity,
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
July 1999, The Journal of experimental medicine,
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
September 1992, European journal of immunology,
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
May 1997, Immunology,
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
September 2016, Journal of leukocyte biology,
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
October 1994, Journal of immunology (Baltimore, Md. : 1950),
K F Byth, and L A Conroy, and S Howlett, and A J Smith, and J May, and D R Alexander, and N Holmes
July 1997, Immunology,
Copied contents to your clipboard!