CD45 enhances positive selection and is expressed at a high level in large, cycling, positively selected CD4+CD8+ thymocytes. 1997

C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
Biomedical Research Centre, University of British Columbia, Vancouver, Canada.

T-cell development is arrested at the CD4+CD8+ (DP; double-positive) stage of thymocyte development in CD45 null mice. However, the mechanism by which CD45 participates in the positive selection of T cells remains to be investigated. In this report we describe a DP thymocyte population that associates positive selection with expression of high levels of CD45, CD4 and CD8. DP thymocytes of this phenotype are large, cycling cells and represent approximately 20% of DP thymocytes in normal mice. In mice expressing a transgenic T-cell receptor (TCR) specific for the male antigen presented by H-2Db (H-Y TCR), the up-regulation of TCR, CD5 and CD69 in this large DP population occurred in a major histocompatibility complex (MHC)-restricted manner. To investigate further the role of CD45 in positive selection, we determined whether thymocytes that expressed a transgenic CD45RO molecule under the control of the proximal lck promoter can influence the positive selection of T cells in H-Y TCR transgenic mice. It was found that in female H-Y TCR transgenic mice, MHC-restricted positive selection of CD4- CD8+ H-Y TCR+ thymocytes was enhanced by increased CD45RO expression. Thus, CD45 increases the efficacy of positive selection of CD4- CD8+ thymocytes that express H-Y TCR.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D005805 Genes, MHC Class I Genetic loci in the vertebrate major histocompatibility complex which encode polymorphic characteristics not related to immune responsiveness or complement activity, e.g., B loci (chicken), DLA (dog), GPLA (guinea pig), H-2 (mouse), RT-1 (rat), HLA-A, -B, and -C class I genes of man. Class I Genes,Genes, Class I,Genes, H-2 Class I,Genes, HLA Class I,MHC Class I Genes,H-2 Class I Genes,HLA Class I Genes,Class I Gene,Gene, Class I,Genes, H 2 Class I,H 2 Class I Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
December 1991, Journal of immunology (Baltimore, Md. : 1950),
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
October 1996, International immunology,
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
September 1992, European journal of immunology,
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
April 1996, The Journal of experimental medicine,
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
November 1997, Scandinavian journal of immunology,
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
April 1995, Journal of immunology (Baltimore, Md. : 1950),
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
January 2018, PloS one,
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
March 1995, Nature,
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
September 1994, Journal of immunology (Baltimore, Md. : 1950),
C J Ong, and J P Dutz, and D Chui, and H S Teh, and J D Marth
February 1990, The Journal of experimental medicine,
Copied contents to your clipboard!