Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. 1996

H T Hassan, and A Zander
Department of Hematology and Oncology, Hamburg University Hospital Eppendorf, Germany.

Stem cell factor (SCF) is an essential hematopoietic cytokine that interacts with other cytokines to preserve the viability of hematopoietic stem and progenitor cells, to influence their entry into the cell cycle and to facilitate their proliferation and differentiation. SCF on its own cannot drive noncycling hematopoietic progenitor cells into the cell cycle but does prevent their apoptotic death. SCF when combined with other cytokines increases the cloning efficacy of hematopoietic progenitor cells from all lineages. SCF also stimulates the growth of CD34+ leukemic progenitor cells from most patients with acute myeloid leukemia (AML). The mRNA expression of the SCF receptor c-kit has been shown to be significantly increased in all fresh AML blast cells compared with normal controls (healthy volunteers), in particular CD34+ cells. Two inhibitory cytokines, transforming growth factor-beta and interleukin-4, decreased c-kit expression, whereas tumor necrosis factor-alpha increased c-kit expression, but chemotherapeutic drugs showed no effect on c-kit expression, but chemotherapeutic drugs showed no effect on c-kit expression in AML cells. Apoptosis has been shown to be directly related to a high complete remission rate in AML patients following induction therapy. Since SCF has been shown to stimulate the proliferation of mainly CD34+ AML cells, we have investigated whether the poor response of patients with CD34+ myeloid leukemia cells to chemotherapy could be due to SCF-induced resistance to apoptosis. The effect of SCF on the apoptosis induced by chemotherapeutic drugs commonly used in the treatment of AML - cytarabine, daunorubicin and carboplatin - was examined in human CD34+ myeloid leukemia cells in serum-free cultures. SCF significantly reduced the induced apoptosis by more than 50% in all CD34+ human leukemia cells treated by any of the three chemotherapeutic drugs. Antibodies blocking c-kit reversed the significant inhibitory effect of SCF on chemotherapy-induced apoptosis, confirming the role of SCF in the resistance to chemotherapy-induced apoptosis in CD34+ human leukemia. These results suggest that the poor response of patients with CD34+ leukemia cells could be at least partially due to less chemotherapy-induced apoptosis resulting from protection by SCF as an adjuvant mechanism for drug resistance in myeloid leukemia. We conclude that an antisense strategy to block c-kit expression in AML blast cells may prove valuable for decreasing the chemoresistance of AML patients. The abrogation of leukemic resistance to apoptotic death through anti-SCF/c-pit expression combined with chemotherapy offers potential for designing novel therapeutic approaches for refractory AML patients.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006402 Hematologic Diseases Disorders of the blood and blood forming tissues. Blood Diseases,Hematological Diseases,Blood Disease,Disease, Blood,Disease, Hematologic,Disease, Hematological,Diseases, Blood,Diseases, Hematologic,Diseases, Hematological,Hematologic Disease,Hematological Disease
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

H T Hassan, and A Zander
July 2007, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
H T Hassan, and A Zander
April 2020, Annals of the New York Academy of Sciences,
H T Hassan, and A Zander
October 1993, Sheng li ke xue jin zhan [Progress in physiology],
H T Hassan, and A Zander
July 2010, Current opinion in hematology,
H T Hassan, and A Zander
August 1997, Blood,
H T Hassan, and A Zander
January 2018, HemaSphere,
H T Hassan, and A Zander
January 1984, Nordisk medicin,
H T Hassan, and A Zander
July 2011, Disease models & mechanisms,
Copied contents to your clipboard!