Modulation of the isoprenaline-induced membrane hyperpolarization of mouse skeletal muscle cells. 1995

H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
Graduate School for Neurosciences Amsterdam, Institute of Neurobiology, The Netherlands.

1. The hyperpolarization of the resting membrane potential, Vm, induced by isoprenaline in the lumbrical muscle fibres of the mouse, was investigated by use of intracellular microelectrodes. 2. In normal Krebs-Henseleit solution (potassium concentration: K+o = 5.7 mM, 'control'), Vm was -7.40 +/- 0.2 mV; lowering K+o to 0.76 mM ('low K+o') resulted in either a hyperpolarization (Vm = -95.7 +/- 2.9 mV), or a depolarization (Vm = -52.0 +/- 0.3 mV). 3. Isoprenaline (> or = 200 nM) induced a hyperpolarization of Vm by delta Vm = -5.6 +/- 0.4 mV in control solution. 4. When Vm hyperpolarized after switching to low K+o, the addition of isoprenaline resulted in increased hyperpolarization Vm: delta Vm = -16.3 +/- 3.2 mV to a final Vm = -110.1 +/- 3.4 mV. Adding iso-prenaline when Vm depolarized in low K+o, leads to a hyperpolarization of either by -11.6 +/- 0.5 mV to -63.6 +/- 0.8 mV or by -51.7 +/- 2.7 mV to -106.9 +/- 3.9 mV. 5. Ouabain (0.1 to 1 mM) did not suppress the hyperpolarization by isoprenaline in 5.7 mM K+o (delta Vm = -6.7 +/- 0.4 mV) or the hyperpolarization of the depolarized cells in low K+- (delta Vm = -9.7 +/- 1.5 mV). 6. The hyperpolarization is a logarithmically decreasing function of K+o in the range between 2 and 20 mM (12 mV/decade). 7.IBMX and 8Br-cyclic AMP mimicked the response to isoprenaline whereas forskolin (FSK) induced in low K+o a hyperpolarization of -7.0 +/- 0.7 mV that could be augmented by addition of isoprenaline (delta Vm = -8.2 +/- 1.8 mV). 8. In control and low K+o, Ba2+ (0.6 mM) inhibited the hyperpolarization induced by isoprenaline, IBMX or 8Br-cyclic AMP. Other blockers of the potassium conductance such as TEA (5 mM) and apamin (0.4 microM) had no effect. 9. We conclude that in the lumbrical muscle of the mouse the isoprenaline-induced hyperpolarization is primarily due to an increase in potassium permeability.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
August 1984, Biochimica et biophysica acta,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
December 1984, The American journal of physiology,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
March 1985, Naunyn-Schmiedeberg's archives of pharmacology,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
September 1967, Biulleten' eksperimental'noi biologii i meditsiny,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
January 1979, Comparative biochemistry and physiology. C: Comparative pharmacology,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
February 1989, The American journal of physiology,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
August 1981, British journal of pharmacology,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
February 1981, Biochimica et biophysica acta,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
December 1993, Journal of cellular physiology,
H G van Mil, and C J Kerkhof, and J Siegenbeek van Heukelom
December 2007, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
Copied contents to your clipboard!