Increase of metaiodobenzylguanidine uptake and intracellular half-life during differentiation of human neuroblastoma cells. 1996

P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
Oncology Research Laboratory, G. Gaslini Children's Hospital, Genoa, Italy.

Iodine-labelled metaiodobenzylguanidine (MIBG) is a radiopharmaceutical used for diagnostic imaging and targeted radiotherapy of neuroendocrine tumors. We previously reported that the ability of a neuroblastoma (NB) cell line, LAN-5, to accumulate MIBG was powerfully stimulated by interferon-gamma (IFN-gamma), a well-known NB differentiation-promoting agent. To extend the above findings, we have investigated 5 NB cell lines for their ability to accumulate 125I-MIBG in basal conditions or after various combinations of differentiative stimuli. Our results show that association of IFN-gamma and tumor necrosis factor-alpha boosts MIBG uptake in the early times of incubation in LAN-5 and GI-LI-N cells, while both SK-N-SH and SK-N-BE(2)c cells are strongly stimulated by co-treatment with IFN-gamma and all-trans retinoic acid. Moreover, although only LAN-5 and GI-LI-N cells are sensitive to IFN-gamma alone, the combination of IFN-gamma and IFN-alpha causes a synergistic increase in MIBG uptake in all the NB cell lines tested. From experiments on MIBG release we conclude that no intracellular storage within specialized structures took place during differentiation. The observed enhancement in MIBG accumulation results from an increased uptake of the drug only. This conclusion was confirmed by analyzing MIBG-transporter gene expression, which was increased in cells subjected differentiative regimens. According to these findings, inducing differentiation of NB cells in vitro appears to improve their MIBG incorporation ability powerfully.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007462 Iodobenzenes Any derivative of BENZENE that contains IODINE.
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
January 1993, Cytotechnology,
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
January 1993, Cytotechnology,
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
March 1989, Minerva pediatrica,
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
January 1991, Journal of nuclear biology and medicine (Turin, Italy : 1991),
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
January 1991, Journal of nuclear biology and medicine (Turin, Italy : 1991),
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
May 1997, European journal of nuclear medicine,
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
September 1992, Cancer research,
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
May 2000, European journal of nuclear medicine,
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
February 1990, Cancer research,
P G Montaldo, and L Raffaghello, and F Guarnaccia, and V Pistoia, and A Garaventa, and M Ponzoni
November 1984, The Journal of cell biology,
Copied contents to your clipboard!