Effect of adrenergic receptor ligands on metaiodobenzylguanidine uptake and storage in neuroblastoma cells. 1997

J W Babich, and W Graham, and A J Fischman
Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.

The effects of adrenergic receptor ligands on uptake and storage of the radiopharmaceutical [125I]metaiodobenzylguanidine (MIBG) were studied in the human neuroblastoma cell line SK-N-SH. For uptake studies, cells were incubated for 15 min with varying concentrations of alpha-agonist (clonidine, methoxamine, and xylazine), alpha-antagonist (phentolamine, tolazoline, phenoxybenzamine, yohimbine, and prazosin), beta-antagonist (propranolol, atenolol), beta-agonist (isoprenaline and salbutamol), mixed alpha/beta antagonist (labetalol), or the neuronal blocking agent guanethidine, prior to the addition of [125I]MIBG (0.1 microM). The incubation was continued for 2 h and specific cell-associated radioactivity was measured. For the storage studies, cells were incubated with [125I]MIBG for 2 h, followed by replacement with fresh medium with or without drug (MIBG, clonidine, or yohimbine). Cell-associated radioactivity was measured at various times over the next 20 h. Propanolol reduced [125I]MIBG uptake by approximately 30% (P<0.01) at all concentrations tested, most likely due to nonspecific membrane changes. However, incubation with the other beta-agonists or antagonists failed to elicit significant reductions in uptake. In contrast, all of the alpha-agonists significantly inhibited uptake (P<0.05); guanethidine >xylazine >clonidine=methoxamine. The alpha-antagonists demonstrated a broad range of inhibition (phenoxybenzamine >>phentolamine >prazosin >>yohimbine=tolazoline)(P< 0.05). The mixed ligand, labetolol, inhibited MIBG uptake in a dose-dependent manner with an apparent IC50 of 0.65 microM. The retention studies demonstrated that unlabeled MIBG caused profound self-inhibition (P<0.01). Clonidine produced a modest inhibition of retention and yohimbine had no effect. Labetalol, phenoxybenzamine, guanethidine, and propranolol reduced uptake of [125I]MIBG by neuroblastoma cells in culture. Although only labetalol has been reported to cause false-negative MIBG scans, our results suggest that these other drugs have the potential to interfere with MIBG imaging and therapy, particularly at high doses. Adrenergic drugs did not alter cytoplasmic retention of [125I]MIBG in neuroblastoma cells but may have potential in tumors such as phenochromocytoma, where granular storage of MIBG has been observed. Inhibition of [125I]MIBG retention by unlabeled MIBG supports the use of high specific activity radioiodinated MIBG for both diagnosis and therapy.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007462 Iodobenzenes Any derivative of BENZENE that contains IODINE.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D003287 Contrast Media Substances used to allow enhanced visualization of tissues. Radiopaque Media,Contrast Agent,Contrast Agents,Contrast Material,Contrast Materials,Radiocontrast Agent,Radiocontrast Agents,Radiocontrast Media,Agent, Contrast,Agent, Radiocontrast,Agents, Contrast,Agents, Radiocontrast,Material, Contrast,Materials, Contrast,Media, Contrast,Media, Radiocontrast,Media, Radiopaque
D006145 Guanethidine An antihypertensive agent that acts by inhibiting selectively transmission in post-ganglionic adrenergic nerves. It is believed to act mainly by preventing the release of norepinephrine at nerve endings and causes depletion of norepinephrine in peripheral sympathetic nerve terminals as well as in tissues. ((2-Hexahydro-1(2H)-azocinyl)ethyl)guanidine,Guanethidine Monosulfate,Guanethidine Sulfate,Guanethidine Sulfate (1:1),Guanethidine Sulfate (1:2),Guanethidine Sulfate (2:1),Guanethidine Sulfate (2:1), 14C-Labeled,Ismelin,Isobarin,Octadine,Oktadin,Monosulfate, Guanethidine,Sulfate, Guanethidine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

J W Babich, and W Graham, and A J Fischman
January 1991, Journal of nuclear biology and medicine (Turin, Italy : 1991),
J W Babich, and W Graham, and A J Fischman
January 1991, Journal of nuclear biology and medicine (Turin, Italy : 1991),
J W Babich, and W Graham, and A J Fischman
July 1996, International journal of cancer,
J W Babich, and W Graham, and A J Fischman
May 2000, European journal of nuclear medicine,
J W Babich, and W Graham, and A J Fischman
April 1975, Nature,
J W Babich, and W Graham, and A J Fischman
August 1985, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
J W Babich, and W Graham, and A J Fischman
January 1991, Journal of nuclear biology and medicine (Turin, Italy : 1991),
Copied contents to your clipboard!