Cloning and expression of the BalI restriction-modification system. 1996

H Ueno, and I Kato, and Y Ishino
Biotechnology Research Laboratories, Takara Shuzo Co. Ltd, Shiga, Japan.

BalI, a type II restriction-modification (R-M) system from the bacterium, Brevibacterium albidum, recognizes the DNA sequence 5'-TGGCCA-3'. We cloned the genes encoding the BalI restriction endonuclease and methyltransferase and expressed them in Escherichia coli. The two genes were aligned tail-to-tail and their termination codons overlapped. BalI restriction endonuclease and methyltransferase comprise 260 and 280 amino acids, respectively, and have molecular weights of 29 043 and 31 999 Da. The amino acid sequence of BalI methyltransferase is similar to that of other m6A MTases, although it has been categorized as a m5C methyltransferase. A high expression system for the BalI restriction endonuclease was constructed in E. coli for the production of large quantities of enzyme.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D001951 Brevibacterium A gram-positive organism found in dairy products, fresh and salt water, marine organisms, insects, and decaying organic matter.
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II
D015257 DNA-Cytosine Methylases Methylases that are specific for CYTOSINE residues found on DNA. Cytosine-Specific DNA Methylase,DNA Modification Methylases (Cytosine-Specific),DNA-Cytosine Methylase,Modification Methylases (Cytosine-Specific),Site-Specific DNA Methyltransferase (Cytosine-Specific),Site-Specific Methyltransferases (Cytosine-Specific),Cytosine-Specific DNA Methylases,DNA Modification Methylases Cytosine Specific,Modification Methylases (Cytosine Specific),Site Specific Methyltransferases (Cytosine Specific),Cytosine Specific DNA Methylase,Cytosine Specific DNA Methylases,DNA Cytosine Methylase,DNA Cytosine Methylases,DNA Methylase, Cytosine-Specific,DNA Methylases, Cytosine-Specific,Methylase, Cytosine-Specific DNA,Methylase, DNA-Cytosine,Methylases, Cytosine-Specific DNA
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

H Ueno, and I Kato, and Y Ishino
August 1985, Indian journal of biochemistry & biophysics,
H Ueno, and I Kato, and Y Ishino
December 1987, Nucleic acids research,
H Ueno, and I Kato, and Y Ishino
July 1990, Nucleic acids research,
H Ueno, and I Kato, and Y Ishino
December 1989, Nucleic acids research,
H Ueno, and I Kato, and Y Ishino
February 1989, Nucleic acids research,
H Ueno, and I Kato, and Y Ishino
January 1990, Molekuliarnaia biologiia,
H Ueno, and I Kato, and Y Ishino
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!