S-laminin and N-acetylgalactosamine located at the synaptic basal lamina of skeletal muscle are involved in synaptic recognition by growing neurites. 1995

M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
Department of Ciències Mèdiques Bàsiques, Universitat de Lleida, Spain.

The purpose of the work reported here is to identify molecular components of the synaptic basal lamina of skeletal muscle fibres which allow recognition of original synaptic sites by regenerating motor axons. We focused on s-laminin and components recognized by the lectin Dolichos biflorus agglutinin previously shown to be specifically located at the synaptic basal lamina. We used a cryoculture bioassay in which chick ciliary ganglion neurons grow on rat skeletal muscle cryostat sections. In control cultures, neurites extended over the muscle sections in close association with the muscle cell surface. It was observed that most of the neurites that extended towards the endplate zone and reached an area of 40 microns around the neuromuscular junction ceased to grow when they contacted the synaptic site. Masking either lectin receptors or some s-laminin molecule epitopes prior to the culture of neurons alters the behaviour of growing neurites. On sections treated either with Dolichos biflorus agglutinin or anti s-laminin monoclonal antibodies (D5 and C4) most of the neurites did not stop their growth at the synaptic regions. Moreover, treating muscle sections with Dolichos biflorus agglutinin removed the gradient of substratum affinity around the endplate. These results indicate that the s-laminin and Dolichos biflorus agglutinin receptors present on muscle cell surfaces may play a functional role in the interaction of growing neurites with original synaptic sites in the process of neuromuscular regeneration.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D000116 Acetylgalactosamine The N-acetyl derivative of galactosamine. 2-Acetamido-2-D-galactopyranose,2-Acetamido-2-Deoxy-D-Galactose,2-Acetamido-2-Deoxygalactose,N-Acetyl-D-Galactosamine,2 Acetamido 2 D galactopyranose,2 Acetamido 2 Deoxy D Galactose,2 Acetamido 2 Deoxygalactose,N Acetyl D Galactosamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite

Related Publications

M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
April 1994, The Journal of cell biology,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
February 1995, Molecular and cellular neurosciences,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
December 1989, Cell,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
September 1985, The Journal of cell biology,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
April 2003, The Journal of biological chemistry,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
May 1997, The Journal of cell biology,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
December 2003, Medical electron microscopy : official journal of the Clinical Electron Microscopy Society of Japan,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
February 2000, Pediatric neurology,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
October 1993, Plastic and reconstructive surgery,
M Iglesias, and R M Soler, and D D Hunter, and J Ribera, and J E Esquerda, and J X Comella
April 1967, Circulation,
Copied contents to your clipboard!