Ion gradients and contractility in skeletal muscle: the role of active Na+, K+ transport. 1996

O B Nielsen, and K Overgaard
Department of Physiology, University of Aarbus, Denmark.

Intensive contractile activity is associated with a significant net loss of K+ and a comparable gain of Na+ in the working muscle fibres. This leads to an increase in the interstitial and T-tubular K+ concentration and to a decrease in the T-tubular Na+ concentration. It is well established that the exposure of muscles to high extracellular K+ or low extracellular Na+ inhibits contractile performance. More importantly, the combination of high extracellular K+ and low extracellular Na+ has a much more pronounced inhibitory effect on force than the sum of the individual effects of the two ions. The inhibitory effects of high extracellular K+ or low extracellular Na+ can be alleviated within 5-10 min by acute hormonal stimulation of the Na+, K+ pump. In contrast, reductions in the capacity for active Na+, K+ transport by pre-incubation of isolated muscles with ouabain or by prior K+ depletion of the animals significantly decreases contractile endurance during high-frequency electrical stimulation. Thus, muscles from K(+)-depleted rats exhibiting a 54% reduction in Na+, K+ pump concentration showed a 110% increase in force decline during 30 s of 60 Hz stimulation. Reducing the Na+, K+ pump capacity to a similar extent by pre-incubation with ouabain led to a comparable decrease in endurance. Moreover, reductions in the Na+, K+ pump capacity were associated with an increased intracellular accumulation of Na+ during electrical stimulation. These observations support the notion that excitation-induced decreases in Na+, K+ gradients contribute to fatigue during intensive exercise and suggest that the capacity for active Na+, K+ transport is a determining factor for contractile endurance.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018763 Muscle Fatigue A state arrived at through prolonged and strong contraction of a muscle. Studies in athletes during prolonged submaximal exercise have shown that muscle fatigue increases in almost direct proportion to the rate of muscle glycogen depletion. Muscle fatigue in short-term maximal exercise is associated with oxygen lack and an increased level of blood and muscle lactic acid, and an accompanying increase in hydrogen-ion concentration in the exercised muscle. Fatigue, Muscle,Muscular Fatigue,Fatigue, Muscular

Related Publications

O B Nielsen, and K Overgaard
June 1996, Acta physiologica Scandinavica,
O B Nielsen, and K Overgaard
July 1986, Physiological reviews,
O B Nielsen, and K Overgaard
November 1991, The American journal of physiology,
O B Nielsen, and K Overgaard
October 2003, Physiological reviews,
O B Nielsen, and K Overgaard
December 1994, Acta physiologica Scandinavica,
O B Nielsen, and K Overgaard
April 2003, The Journal of physiology,
O B Nielsen, and K Overgaard
January 1980, Annals of the New York Academy of Sciences,
O B Nielsen, and K Overgaard
May 1997, The American journal of physiology,
Copied contents to your clipboard!