The influence of the sparteine/debrisoquine genetic polymorphism on the disposition of dexfenfluramine. 1996

A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
Department of Clinical Pharmacology, Royal North Shore Hospital, St Leonards, New South Wales, Australia.

1. To determine whether dexfenfluramine is a substrate of cytochrome P450 2D6 (CYP2D6), its disposition has been studied in nine extensive (EM) and eight poor metabolizers (PM) of debrisoquine. 2. Following a 30 mg dose of dexfenfluramine hydrochloride, urine was collected in all subjects for 96 h post-dose and plasma samples were collected in 11 subjects (six EMs and five PMs). Dexfenfluramine and nordexfenfluramine were measured in urine by h.p.l.c. and in plasma by g.c. 3. Urinary recovery of dexfenfluramine was greater in PMs than EMs (4136 +/- 1509 micrograms vs 1986 +/- 792 micrograms; 95% CI of difference 926-3374; P < 0.05) whereas that of nordexfenfluramine was similar in both phenotypes (PM: 1753 +/- 411 micrograms vs 1626 +/- 444 micrograms). 4. Dexfenfluramine AUC was higher in PMs (677 +/- 348 micrograms l-1 h) than EMs 359 +/- 250 micrograms l-1 h). The apparent oral clearance of dexfenfluramine was greater in EMs than PMs (93.6 +/- 42.4 l h-1 vs 45.6 +/- 19.5 l h-1; 95% CI of difference 1.2-94.7; P < 0.05). The renal clearance was similar in both phenotypes (EMs: 5.88 +/- 2.83 l h-1; PMs 6.60 +/- 2.01 l h-1), indicating that the higher urinary recovery of dexfenfluramine in PMs reflects higher plasma concentrations, rather than phenotype differences in the renal handling, of dexfenfluramine. 5. The apparent nonrenal clearance of dexfenfluramine was substantially lower (P < 0.05; 95% CI of difference 3.0-94.1) in PMs (39.0 +/- 19.5 l h-1) than EMs (87.6 +/- 41.2 l h-1). 6. There was a significant inverse correlation (rs = 0.776 95% CI-0.31-0.94; n = 11; p = 0.005) between the debrisoquine metabolic ratio and the apparent nonrenal clearance of dexfenfluramine. 7. PMs had a higher incidence of adverse effects (nausea and vomiting) than EMs. 8. In conclusion, the metabolism of dexfenfluramine is impaired in PMs. Thus CYP2D6, the isoenzyme deficient in poor metabolizers of debrisoquine, must catalyse at least one pathway of dexfenfluramine biotransformation.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003647 Debrisoquin An adrenergic neuron-blocking drug similar in effects to GUANETHIDINE. It is also noteworthy in being a substrate for a polymorphic cytochrome P-450 enzyme. Persons with certain isoforms of this enzyme are unable to properly metabolize this and many other clinically important drugs. They are commonly referred to as having a debrisoquin 4-hydroxylase polymorphism. Debrisoquine,Tendor
D005260 Female Females
D005277 Fenfluramine A centrally active drug that apparently both blocks serotonin uptake and provokes transport-mediated serotonin release. Fintepla,Fenfluramine Hydrochloride,Fenfluramine Hydrochloride, (+-)-Isomer,Fenfluramine Hydrochloride, R-Isomer,Fenfluramine, (+-)-Isomer,Fenfluramine, R-Isomer,Isomeride,Pondimin,Fenfluramine Hydrochloride, R Isomer,Fenfluramine, R Isomer,Hydrochloride, Fenfluramine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
October 1990, Pharmacology & toxicology,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
January 1990, Pharmacology & therapeutics,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
January 1990, Pharmacology & therapeutics,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
January 1986, Progress in clinical and biological research,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
January 1989, European journal of clinical pharmacology,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
November 1989, British journal of clinical pharmacology,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
April 1993, British journal of clinical pharmacology,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
May 1986, Xenobiotica; the fate of foreign compounds in biological systems,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
January 1985, European journal of clinical pharmacology,
A S Gross, and A C Phillips, and A Rieutord, and G M Shenfield
May 1989, Clinical pharmacology and therapeutics,
Copied contents to your clipboard!