The 5-HT1A receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram. 1996

L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

In a recent study, utilizing single cell recording techniques, we have shown that administration of 5-HT1A receptor antagonists, e.g. (S)-UH-301, to rats concomitantly treated, acute or chronically, with the selective serotonin reuptake inhibitor (SSRI) citalopram significantly increases the activity of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN). Here we report correlative experiments using microdialysis in freely moving animals to measure extracellular levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in the frontal cortex, a major projection area for DRN-5-HT neurons. Acute administration of (S)-UH-301 (2.5 mg/kg s.c.) or citalopram (2.0 mg/kg s.c.) increased 5-HT concentrations with a maximum of about 70% and 185%, respectively, above baseline. However, when (S)-UH-301 was administered 30 min before citalopram the maximal increase in 5-HT levels was approximately 400%. In rats chronically treated with citalopram (20 mg/kg/day i.p. for 14 days) basal 5-HT concentrations in the frontal cortex were significantly increased and 5-HIAA concentrations were decreased when measured 10-12 h, but not 18-20 h, after the last injection of citalopram, as compared to basal 5-HT and 5-HIAA concentrations in chronic saline-treated rats. When (S)-UH-301 (2.5 mg/kg s.c.) was administered 12 h, but not 20 h, after the last dose of citalopram it produced a significantly larger increase in extracellular concentrations of 5-HT than in control rats. However, in rats pretreated with a single, very high dose of citalopram, 20 mg/kg i.p., administration of (S)-UH-301 at 12 h after citalopram did not increase 5-HT levels. The augmentation by (S)-UH-301 of the increase in brain 5-HT output produced by acute administration of citalopram is probably due to antagonism of the citalopram induced feedback inhibition of 5-HT cells in the DRN, as previously suggested. However, the capacity of (S)-UH-301 to further increase the already elevated extracellular concentrations of 5-HT in brain in animals maintained on a chronic citalopram regimen, in which significant tolerance to the initial feedback inhibition of DRN-5-HT cells and developed, represents a novel finding. Generally, the reduced feedback inhibition of 5-HT neurons obtained with chronic citalopram treatment, and the associated elevation of brain 5-HT concentrations, may be related to functional desensitization of somatodendritic 5-HT1A autoreceptors in the DRN. This phenomenon may also largely explain the larger increase in 5-HT output produced by (S)-UH-301 in chronic citalopram treated animals as compared to its effect in control animals. Yet, a contributory factor may be a slight, remaining feedback inhibition of the 5-HT cells caused by residual citalopram at 12, but not 20 h after its last administration. Previous clinical studies suggest that addition of a 5-HT1A receptor antagonist to an SSRI in the treatment of depression may accelerate the onset of clinical effects. Moreover, in therapy-resistant cases maintained on SSRI treatment, addition of a 5-HT1A receptor antagonist may improve clinical efficacy. Since the therapeutic effect of SSRIs in depression has been found to be critically linked to the availability of 5-HT in brain, our experiments results support, in principle, both of the above clinically based notions.

UI MeSH Term Description Entries
D008297 Male Males
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin
D015283 Citalopram A furancarbonitrile that is one of the SELECTIVE SEROTONIN REUPTAKE INHIBITORS used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from TARDIVE DYSKINESIA in preference to tricyclic antidepressants, which aggravate dyskinesia. Celexa,Citalopram Hydrobromide,Cytalopram,Lu-10-171,Seropram,Lu10171
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
September 1996, Pharmacology, biochemistry, and behavior,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
April 2002, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
January 1997, Neuropharmacology,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
February 1996, Protein engineering,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
August 1999, Neuropharmacology,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
June 2004, British journal of pharmacology,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
December 1992, Brain research bulletin,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
January 1994, Journal of neural transmission. General section,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
August 2003, Neuropharmacology,
L Arborelius, and G G Nomikos, and P Hertel, and P Salmi, and P Grillner, and B B Höök, and U Hacksell, and T H Svensson
July 1997, British journal of pharmacology,
Copied contents to your clipboard!