Dendritic morphology of projection neurons in the cat pretectum. 1996

M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
Allgemeine Zoologie und Neurobiologie, Ruhr-Universität, Bochum, Germany. mschmidt@neurobiologie.ruhr-uni-bochum.de

The distribution and dendritic morphology of neurons in the cat pretectal nuclear complex were analyzed with respect to their projection to the ipsilateral dorsal lateral geniculate nucleus (LGNd) and the ipsilateral inferior olive (IO). Single and double retrograde tracing techniques were combined with intracellular injections of either horseradish peroxidase into electrophysiologically identified pretectal neurons or Lucifer Yellow into retrogradely labeled somata. Pretectal cells afferent to the LGNd were located in the nucleus of the optic tract (NOT), adjacent dorsal terminal nucleus of the accessory optic system (DTN), and posterior pretectal nucleus (NPP). Cells projecting to the IO were also distributed throughout the NOT-DTN and dorsal part of the NPP. Separate tracer injections (fluorogold and horseradish peroxidase [HRP] or granular blue) into the LGNd and the IO showed considerable overlap of labeled neurons in the NOT and dorsal NPP. Double-labeled neurons, however, were not observed after double tracer injections into LGNd and IO. Partial topographical segregation of the two populations was observed along the dorsoventral axis because LGNd-projecting neurons exhibited maximum density ventral to that of IO neurons. Pretectal cells to the LGNd had cell body diameters between 16 and 48 microns. Somatic shapes varied between fusiform and multipolar with considerable overlap between these two morphological appearances. Neurons projecting to the IO exhibited similar cell body sizes and their morphology also varied from fusiform to multipolar. Quantitative analysis of dendritic field size and orientation, number and order of dendritic arborizations, and symmetry of the dendritic tree revealed no statistically significant difference between the two neuronal populations. Hence, neurons of the two populations cannot be unequivocally identified just from the dendritic morphology. By contrast, dendritic morphology was correlated with the topographical location of either cell type within the pretectal nuclei rather than projection. Thus, the morphological appearance of neurons located dorsally predominantly was fusiform while neurons located ventrally mostly were multipolar.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
June 1985, The Journal of comparative neurology,
M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
January 1969, Pflugers Archiv : European journal of physiology,
M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
December 2011, The Journal of comparative neurology,
M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
June 1991, Journal of neurophysiology,
M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
January 2002, Neuroscience,
M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
January 1979, Applied neurophysiology,
M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
October 1993, Journal of neuroscience methods,
M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
January 1991, Neuroscience,
M Schmidt, and G Lehnert, and R G Baker, and K P Hoffmann
December 1995, The Journal of comparative neurology,
Copied contents to your clipboard!