Mammalian DNA cytosine-5 methyltransferase interacts with p23 protein. 1996

X Zhang, and G L Verdine
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

In higher eukaryotic genomes, methylated cytosine residues (m(5)C) are distributed in heritable, cell-type-specific patterns, which are believed to be involved in the control of gene expression, developmental regulation and genomic imprinting. These methylation patterns are established and maintained by DNA cytosine-5 methyltransferase (MTase), a approximately 1500 amino acid enzyme containing a regulatory N-terminal domain and a catalytic C-terminal domain. The mechanism responsible for targeting MTase to particular genes is poorly understood and might possibly involve interactions with other proteins. In an effort to identify proteins that interact with the mammalian MTase, we used the yeast two-hybrid system with several different MTase domains as baits. Here we report an interaction between the C-terminal catalytic domain of the MTase and p23, a protein previously reported to associate with the progesterone receptor (PR) complex.

UI MeSH Term Description Entries
D010750 Phosphoproteins Phosphoprotein
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004248 DNA (Cytosine-5-)-Methyltransferases Enzymes that catalyzes the transfer of a methyl group from S-ADENOSYLMETHIONINE to the 5-position of CYTOSINE residues in DNA. DNA (Cytosine-5-)-Methyltransferase,DNA Cytosine-5-Methylase,DNA (Cytosine 5) Methyltransferase,Cytosine-5-Methylase, DNA,DNA Cytosine 5 Methylase
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071876 Prostaglandin-E Synthases Oxidoreductases that catalyze the GLUTATHIONE-dependent oxidoreduction of PROSTAGLANDIN H2 to PROSTAGLANDIN E2. Cytosolic Prostaglandin E2 Synthase,Endoperoxide Isomerase,PGE2 Isomerase,PGE2 Synthase,PGR2 E-Isomerase,PTGES2 Protein,PTGES3 Protein,Prostaglandin E Isomerase,Prostaglandin E Synthase,Prostaglandin E Synthase 1,Prostaglandin E Synthase 2,Prostaglandin E Synthase 3,Prostaglandin E Synthase-1,Prostaglandin E Synthases,Prostaglandin E2 Synthase,Prostaglandin Endoperoxide E Isomerase,Prostaglandin H2 E-Isomerase,Prostaglandin H2-Prostaglandin E2 Isomerase,Prostaglandin R2 E-Isomerase,Prostaglandin-E Synthase,E Synthases, Prostaglandin,Isomerase, Endoperoxide,Isomerase, PGE2,Isomerase, Prostaglandin E,PGR2 E Isomerase,Prostaglandin H2 E Isomerase,Prostaglandin H2 Prostaglandin E2 Isomerase,Prostaglandin R2 E Isomerase,Synthase, PGE2,Synthase, Prostaglandin E,Synthase, Prostaglandin E2,Synthase, Prostaglandin-E,Synthases, Prostaglandin E,Synthases, Prostaglandin-E
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

X Zhang, and G L Verdine
August 1995, The Journal of biological chemistry,
X Zhang, and G L Verdine
January 2003, Proceedings of the National Academy of Sciences of the United States of America,
X Zhang, and G L Verdine
March 2011, Proceedings of the National Academy of Sciences of the United States of America,
X Zhang, and G L Verdine
January 1985, Journal of cellular biochemistry,
X Zhang, and G L Verdine
October 1988, European journal of biochemistry,
X Zhang, and G L Verdine
May 1996, Biochemistry and molecular biology international,
X Zhang, and G L Verdine
April 2006, Microbiology (Reading, England),
X Zhang, and G L Verdine
January 1985, Comptes rendus des seances de la Societe de biologie et de ses filiales,
X Zhang, and G L Verdine
January 1991, Journal of molecular biology,
Copied contents to your clipboard!