The trigeminally evoked blink reflex. I. Neuronal circuits. 1995

J J Pellegrini, and A K Horn, and C Evinger
Department of Biology, College of St. Catherine, St. Paul, MN 55105, USA.

In this study, we characterized the pathways that generate the trigeminal blink reflex in the guinea pig. Blinks were evoked by stimulation of the supraorbital branch of the trigeminal nerve and measured by recording electromyographic activity in the lid-closing orbicularis oculi muscle (OOemg) and, in one case, lid position. Blinks evoked by stimulation of the supraorbital nerve consisted of two bursts of muscle activity ipsilateral to the side of stimulation. The first, R1, had a latency of 6.9 ms and the second, R2, had a latency of 17.25 ms. Increasing stimulus intensity to 3 times threshold for evoking an ipsilateral blink elicited an R1 and R2 response contralaterally, with latencies of 9.2 ms and 19.25 ms, respectively. We investigated the causes for this bipartite response that is seen in the guinea pig, as well as other mammals including humans. The two-component response could arise from different populations of afferents, or from different central circuits, or a combination of these two causes. Multiunit recording in the trigeminal ganglion and simultaneous measurement of the OOemg showed that activation of A beta afferents alone was sufficient to elicit both the R1 and the R2 responses, but that activation of A delta afferents could enhance both responses. Different neural circuits, however, produce the R1 and R2 responses. Transganglionic tracing with wheatgerm agglutin or choleragenoid subunit of cholera toxin bound to HRP revealed that primary afferents from the supraorbital branch of the trigeminal nerve terminated densely in the dorsal horn of spinal cord segment C1 and in the caudalis-interpolaris border region of the spinal trigeminal nucleus. Injections of HRP into the orbicularis oculi motoneuron region of the facial nucleus showed that both of these regions projected to the facial nucleus. Hemisections at the level of C1 eliminated the R2 blink response, but not the R1 response, evoked by stimulation of the supraorbital branch of the trigeminal nerve. Subsequent hemisections at the level of the obex eliminated the R1 response. Microinjections of the GABAB agonist baclofen into the spinal trigeminal nucleus at the level of the obex abolished the R1 but not the R2 response. Thus, the spinal trigeminal nucleus produces the R1 component, whereas the R2 component originates in the C1 region of the spinal cord.

UI MeSH Term Description Entries
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D001767 Blinking Brief closing of the eyelids by involuntary normal periodic closing, as a protective measure, or by voluntary action. Orbicularis Oculi Reflex,Reflex, Blink,Reflex, Corneal,Reflex, Orbicularis Oculi,Winking,Blink Reflexes,Corneal Reflexes,Orbicularis Oculi Reflexes,Blink Reflex,Reflexes, Blink,Reflexes, Orbicularis Oculi
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

J J Pellegrini, and A K Horn, and C Evinger
January 1995, Experimental brain research,
J J Pellegrini, and A K Horn, and C Evinger
February 1986, Bollettino della Societa italiana di biologia sperimentale,
J J Pellegrini, and A K Horn, and C Evinger
March 1997, Muscle & nerve,
J J Pellegrini, and A K Horn, and C Evinger
October 1987, Journal of neurology,
J J Pellegrini, and A K Horn, and C Evinger
October 1983, Harefuah,
J J Pellegrini, and A K Horn, and C Evinger
February 2015, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society,
J J Pellegrini, and A K Horn, and C Evinger
August 2021, The Journal of comparative neurology,
J J Pellegrini, and A K Horn, and C Evinger
March 2002, Journal of neurophysiology,
J J Pellegrini, and A K Horn, and C Evinger
February 1981, Neurology,
J J Pellegrini, and A K Horn, and C Evinger
January 1982, Advances in neurology,
Copied contents to your clipboard!