Regulation of leukotriene-biosynthetic enzymes during differentiation of myelocytic HL-60 cells to eosinophilic or neutrophilic cells. 1996

K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
Department of Pharmacology and Therapeutics, McGill University, Quebec, Canada.

Leukotrienes (LTs) are potent mediators of bronchial inflammation and are predominantly produced by myeloid cells. As myelocytic cells differentiate towards either eosinophils or neutrophils, the profile of leukotrienes they produce upon stimulation diverges. Eosinophils produce mainly cysteinyl leukotrienes whereas neutrophils predominantly synthesize 5(S), 12(R)-dihydroxy-6,8,10,14-eicosatetraenoic acid (LTB delta). The mechanism by which this change in leukotriene composition occurs is unknown. In this study, we investigated the control of leukotriene biosynthetic enzymes during myeloid cell differentiation. Western-blot analyses of myelocytic leukemia cell lines, HL-60#7 and HL-60, differentiated towards eosinophilic or neutrophilic cell types, respectively, demonstrated that as myelocytic cells differentiate towards eosinophils or neutrophils, the protein levels of cytosolic phospholipase A2 (cPLA2) remain constant, whereas 5-lipoxygenase and 5-lipoxygenase-activating protein (FLAP) levels are simultaneously elevated. As myelocytic cells become more eosinophil-like, 5(S)-hydroxy- 6(R)-S-glutathionyl-7,9-trans-11, 14-cis-eicosatetraenoic acid (LTC delta) synthase activity and expression of both the protein and messenger RNA in the cells are dramatically increased (approximately 75-fold), while the LTC delta synthase level and activity in neutrophil-like cells remain constant at very low levels. In contrast, in neutrophilic cells, the amount of 5,6-oxido-7,9,11,14-eicosatetraenoic acid (LTA delta) hydrolase was elevated approximately 100-fold greater than the increase in LTA delta hydrolase from eosinophilic cells. These results indicate that as a myeloid cell differentiates towards a granulocyte, similar mechanisms of regulation may be applied to the leukotriene biosynthetic pathway up to the point at which the pathway diverges. At the stage in the leukotriene biosynthetic pathway where LTA delta may be converted to either LTC delta or to LTB delta, specific regulators of transcription may become activated as a myelocytic cell differentiates, thereby causing increased LTA delta hydrolase or LTC delta synthase expression.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004804 Eosinophils Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin. Eosinophil
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
September 2003, Biochemical and biophysical research communications,
K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
September 2005, British journal of haematology,
K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
June 2003, Biochemical and biophysical research communications,
K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
May 1990, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
October 1994, Biochimica et biophysica acta,
K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
April 1995, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
November 2003, International immunopharmacology,
K A Scoggan, and D W Nicholson, and A W Ford-Hutchinson
September 1993, Agents and actions,
Copied contents to your clipboard!