Mechanism of valproic acid uptake by isolated rat brain microvessels. 1995

K Naora, and D D Shen
Department of Pharmaceutics, University of Washington, Seattle 98195, USA.

In an effort to characterize putative transport systems of valproic acid (VPA) at the blood-brain barrier, the effects of various substrates and inhibitors of known anion transporters on the equilibrium vessel-to-medium concentration (vessel/medium) ratio of VPA were investigated using isolated rat brain microvessels. The equilibrium vessel/medium ratio of VPA was decreased by the presence of high millimolar concentration of unlabeled VPA, indicating that a saturable transport system was involved in VPA transport from medium to microvessels. Short-chain monocarboxylates such as propionic acid, pyruvic acid, and L-lactic acid did not alter the vessel/medium ratio, whereas medium-chain fatty acids and unsaturated metabolites of VPA significantly inhibited the net transport of VPA. Dicarboxylates, tricarboxylate, and p-aminohippuric acid did not affect VPA accumulation in the brain microvessels. Several anionic drugs including salicylic acid, penicillin G, cefazolin, and probenecid significantly reduced the vessel/medium ratio of VPA. In addition, disulfonate inhibitors of inorganic anion exchangers, SH-group modifying reagent, and metabolic inhibitor showed remarkable inhibitory effects on the net transport of VPA between brain microvessels and medium. These results suggest that VPA may be actively transported through the antiluminal membrane via a carrier-mediated system shared by other anionic drugs.

UI MeSH Term Description Entries
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014635 Valproic Acid A fatty acid with anticonvulsant and anti-manic properties that is used in the treatment of EPILEPSY and BIPOLAR DISORDER. The mechanisms of its therapeutic actions are not well understood. It may act by increasing GAMMA-AMINOBUTYRIC ACID levels in the brain or by altering the properties of VOLTAGE-GATED SODIUM CHANNELS. Dipropyl Acetate,Divalproex,Sodium Valproate,2-Propylpentanoic Acid,Calcium Valproate,Convulsofin,Depakene,Depakine,Depakote,Divalproex Sodium,Ergenyl,Magnesium Valproate,Propylisopropylacetic Acid,Semisodium Valproate,Valproate,Valproate Calcium,Valproate Sodium,Valproic Acid, Sodium Salt (2:1),Vupral,2 Propylpentanoic Acid

Related Publications

K Naora, and D D Shen
January 1986, Advances in experimental medicine and biology,
K Naora, and D D Shen
January 1993, Life sciences,
K Naora, and D D Shen
October 1987, Journal of pharmaceutical sciences,
K Naora, and D D Shen
April 1984, The Journal of biological chemistry,
K Naora, and D D Shen
April 1982, Biochemical pharmacology,
K Naora, and D D Shen
March 1996, The Journal of pharmacology and experimental therapeutics,
K Naora, and D D Shen
November 1983, Neurochemical research,
K Naora, and D D Shen
May 1982, Brain research,
K Naora, and D D Shen
February 1981, Journal of neurochemistry,
Copied contents to your clipboard!