Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. 1996

K D Adkison, and D D Shen
Department of Pharmaceutics, University of Washington, Seattle, USA.

The uptake of valproic acid (VPA) from blood into several brain regions was investigated using the "in situ" brain perfusion technique in the rat. The uptake kinetics of VPA exhibited partial saturability and trans-stimulation, which indicate the simultaneous presence of carrier-mediated transport and diffusion. The apparent Michaelis constant for the saturable process ranged from 10mM in the cortical regions to 23.5 mM in the thalamus. The uptake of radiotracer VPA was not inhibited by coperfusion of short-chain (</-C4) fatty acids and alpha-keto acids, which suggests that the short-chain monocarboxylic acid carrier at the blood-brain barrier is not involved in the uptake of VPA. In contrast, medium-chain (C6-C12) fatty acids inhibited the uptake of radiotracer VPA. In addition, para-aminohippurate (PAH) inhibited, whereas both cis- and trans-presence of medium-chain dicarboxylates markedly stimulated the cerebral uptake of radiotracer VPA. These observations suggest that the putative VPA transporter at the blood-brain barrier may be an anion exchanger that operates in a manner similar to that reported for the PAH transporter at the basolateral membrane of the renal tubular epithelium. However, unlike renal basolateral transport of PAH, probenecid promoted rather than inhibited VPA uptake. Also, dicarboxylate stimulation of brain VPA uptake does not appear to be Na+ dependent. VPA exerted a reciprocal inhibition of octanoate uptake into rat brain. Moreover, VPA was capable of inhibiting brain uptake of short-chain monocarboxylic acids, including acetate, lactate and pyruvate.

UI MeSH Term Description Entries
D008297 Male Males
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014635 Valproic Acid A fatty acid with anticonvulsant and anti-manic properties that is used in the treatment of EPILEPSY and BIPOLAR DISORDER. The mechanisms of its therapeutic actions are not well understood. It may act by increasing GAMMA-AMINOBUTYRIC ACID levels in the brain or by altering the properties of VOLTAGE-GATED SODIUM CHANNELS. Dipropyl Acetate,Divalproex,Sodium Valproate,2-Propylpentanoic Acid,Calcium Valproate,Convulsofin,Depakene,Depakine,Depakote,Divalproex Sodium,Ergenyl,Magnesium Valproate,Propylisopropylacetic Acid,Semisodium Valproate,Valproate,Valproate Calcium,Valproate Sodium,Valproic Acid, Sodium Salt (2:1),Vupral,2 Propylpentanoic Acid

Related Publications

K D Adkison, and D D Shen
May 1982, Brain research,
K D Adkison, and D D Shen
October 1995, Epilepsy research,
K D Adkison, and D D Shen
August 1999, Molecular microbiology,
K D Adkison, and D D Shen
October 2001, American journal of physiology. Endocrinology and metabolism,
K D Adkison, and D D Shen
July 1971, Biochimica et biophysica acta,
K D Adkison, and D D Shen
July 1970, Biochimica et biophysica acta,
K D Adkison, and D D Shen
December 1969, Biochimica et biophysica acta,
K D Adkison, and D D Shen
February 1971, Biochimica et biophysica acta,
K D Adkison, and D D Shen
January 2014, Methods in enzymology,
Copied contents to your clipboard!