Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. 1996

C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
Division of Endocrinology, Childrens's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

Herpes simplex virus type 1 (HSV-1) plasmid vectors have promise for genetic intervention in the brain, but several problems caused by the helper virus have compromised their utility. To develop a helper virus-free packaging system for these vectors, the DNA cleavage/packaging signals were deleted from a set of cosmids that represents the HSV-1 genome. Following cotransfection into cells, this modified cosmid set supported replication and packaging of vector DNA. However, in the absence of the DNA cleavage/packaging signals, the HSV-1 genome was not packaged, and consequently vector stocks were free of detectable helper virus. In the absence of helper virus, the vectors efficiently infected rat neural cells in culture or in the brain with minimal cytopathic effects. beta-galactosidase-positive cells were observed for at least 1 month in vivo, and vector DNA persisted for this period. This system may facilitate studies on neuronal physiology and potential therapeutic applications.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003588 Cytopathogenic Effect, Viral Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses. Cytopathic Effect, Viral,Viral Cytopathogenic Effect,Cytopathic Effects, Viral,Cytopathogenic Effects, Viral,Effect, Viral Cytopathic,Effect, Viral Cytopathogenic,Effects, Viral Cytopathic,Effects, Viral Cytopathogenic,Viral Cytopathic Effect,Viral Cytopathic Effects,Viral Cytopathogenic Effects
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015316 Genetic Therapy Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions. Gene Therapy,Somatic Gene Therapy,DNA Therapy,Gene Therapy, Somatic,Genetic Therapy, Gametic,Genetic Therapy, Somatic,Therapy, DNA,Therapy, Gene,Therapy, Somatic Gene,Gametic Genetic Therapies,Gametic Genetic Therapy,Genetic Therapies,Genetic Therapies, Gametic,Genetic Therapies, Somatic,Somatic Genetic Therapies,Somatic Genetic Therapy,Therapies, Gametic Genetic,Therapies, Genetic,Therapies, Somatic Genetic,Therapy, Gametic Genetic,Therapy, Genetic,Therapy, Somatic Genetic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
January 1997, Advances in neurology,
C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
March 1997, Experimental neurology,
C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
March 1995, The Journal of general virology,
C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
April 1998, Molecular and cellular endocrinology,
C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
January 2000, Folia morphologica,
C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
June 2010, The open virology journal,
C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
January 2014, Methods in molecular biology (Clifton, N.J.),
C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
August 2001, Blood,
C Fraefel, and S Song, and F Lim, and P Lang, and L Yu, and Y Wang, and P Wild, and A I Geller
July 2000, Human gene therapy,
Copied contents to your clipboard!