Transient outward K+ channels in vesicles derived from frog skeletal muscle plasma membranes. 1996

J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del IPN, Mexico D.F., Mexico.

Whole-cell voltage-clamp experiments were performed in vesicles derived from frog skeletal muscle plasma membranes. Capacitance measurements showed that these vesicles lack invaginations. In solutions containing K+, transient outward currents with reversal potentials close to EK were recorded with a maximum potassium conductance of 0.3 mS/cm2. These currents inactivated in a voltage-dependent manner with a time constant of decay that reached a limiting value of 26 ms at large depolarizations. The steady-state inactivation reached half-maximum values at -66 mV. Transient currents were completely blocked with 5 mM 4-aminopyridine. Single-channel recordings made in inside-out excised patches from the vesicles had ensemble averages with characteristics similar to those of the macroscopic currents, although with significantly faster inactivation time constants. The single-channel chord conductance was 21 pS when the pipette and bath solutions contained 2.5 mM and 120 mM KCl, respectively. It is concluded that these vesicles contain potassium channels that are very similar to A channels found in neurons and other cells.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011898 Ranidae The family of true frogs of the order Anura. The family occurs worldwide except in Antarctica. Frogs, True,Rana,Frog, True,True Frog,True Frogs
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D055592 Biophysical Phenomena The physical characteristics and processes of biological systems. Biophysical Concepts,Biophysical Processes,Biophysical Phenomenon,Biophysical Process,Biophysical Concept,Concept, Biophysical,Concepts, Biophysical,Phenomena, Biophysical,Phenomenon, Biophysical,Process, Biophysical,Processes, Biophysical
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
June 1998, Pflugers Archiv : European journal of physiology,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
October 1999, The Journal of physiology,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
January 1981, The Journal of membrane biology,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
July 1985, The Journal of physiology,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
June 1991, The Journal of pharmacology and experimental therapeutics,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
December 1986, Pflugers Archiv : European journal of physiology,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
August 1994, The Journal of physiology,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
June 2021, ACS applied materials & interfaces,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
October 1982, Journal of biochemistry,
J Camacho, and M J Delay, and M Vazquez, and C Argüello, and J A Sánchez
April 1979, Biochimica et biophysica acta,
Copied contents to your clipboard!