Changes in dentate granule cell field potentials during afterdischarge initiation triggered by 5 Hz perforant path stimulation. 1996

L J Burdette, and G J Hart, and L M Masukawa
Department of Neurology, Graduate Hospital, Philadelphia, PA 19146, USA.

A failure of early paired pulse depression often precedes the onset of intermittent spontaneous seizures in animal models of status epilepticus. In the present study, changes in the strength of early and late paired pulse depression of dentate granule cell field potentials were compared in the unanesthetized rat during the initiation of a single afterdischarge (AD) evoked by perforant path stimulation (0.1 ms pulse duration, 5 Hz, 12-18 s duration, 50-1000 microA). Late paired pulse depression was measured by sequential changes in the population spike (PS) amplitude during 5 Hz stimulation (200 ms interpulse interpulse interval, IPI). When 5 Hz stimulation triggered an AD, the population spike (PS) was initially depressed and then increased to above pre-train values, indicating a loss of late paired pulse depression by the middle of the train. Early paired pulse depression was measured by inserting paired pulses (20 ms IPI) at spaced intervals throughout the 5 Hz train. In contrast to late paired pulse depression, early paired pulse depression remained at maximum strength until an abrupt failure was detected coincident with AD initiation. Two experimental treatments shown to increase the strength of late paired pulse depression, administration of the N-methyl-D-aspartate antagonist, MK-801 (0.25 mg/kg, i.p.), and the development of kindled seizures, produced an increase in AD thresholds and in the initial depression in the PS amplitude during 5 Hz stimulation. Together, these results suggest that a failure of late paired pulse depression may be a precipitating event in AD initiation triggered by 5 Hz stimulation in the unanesthetized rat.

UI MeSH Term Description Entries
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004056 Differential Threshold The smallest difference which can be discriminated between two stimuli or one which is barely above the threshold. Difference Limen,Just-Noticeable Difference,Weber-Fechner Law,Difference Limens,Difference, Just-Noticeable,Differences, Just-Noticeable,Differential Thresholds,Just Noticeable Difference,Just-Noticeable Differences,Law, Weber-Fechner,Limen, Difference,Limens, Difference,Threshold, Differential,Thresholds, Differential,Weber Fechner Law
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic

Related Publications

L J Burdette, and G J Hart, and L M Masukawa
January 1971, Experimental brain research,
L J Burdette, and G J Hart, and L M Masukawa
June 1979, Brain research,
L J Burdette, and G J Hart, and L M Masukawa
January 1993, Physiology & behavior,
L J Burdette, and G J Hart, and L M Masukawa
December 2005, The Journal of physiology,
L J Burdette, and G J Hart, and L M Masukawa
October 1996, Brain research. Developmental brain research,
Copied contents to your clipboard!