Canal-otolith interactions driving vertical and horizontal eye movements in the squirrel monkey. 1996

L Telford, and S H Seidman, and G D Paige
Department of Neurology, University of Rochester, NY 14642, USA.

The vestibulo-ocular reflex (VOR) was studied in three squirrel monkeys subjected to rotations with the head either centered over, or displaced eccentrically from, the axis of rotation. This was done for several different head orientations relative to gravity in order to determine how canal-mediated angular (aVOR) and otolith-mediated linear (IVOR) components of the VOR are combined to generate eye movement responses in three-dimensional space. The aVOR was stimulated in isolation by rotating the head about the axis of rotation in the upright (UP), right-side down (RD), or nose-up (NU) orientations. Horizontal and vertical aVOR responses were compensatory for head rotation over the frequency range 0.25-4.0 Hz, with mean gains near 0.9. The horizontal aVOR was relatively constant across the frequency range, while vertical aVOR gains increased with increasing stimulation frequency. In the NU orientation, compensatory torsional aVOR responses were of relatively low gain (0.54) compared with horizontal and vertical responses, and gains remained constant over the frequency range. When the head was displaced eccentrically, rotation provided the same angular stimuli but added linear stimulus components, due to the centripetal and tangential accelerations acting on the head. By manipulating the orientation of the head relative to gravity and relative to the axis of rotation, the IVOR response could be combined with, or isolated from, the aVOR response. Eccentric rotation in the UP and RD orientations generated aVOR and IVOR responses which acted in the same head plane. Horizontal aVOR-IVOR interactions were recorded when the head was in the UP orientation and facing toward ("nose-in") or away from ("nose-out") the rotation axis. Similarly, vertical responses were recorded with the head RD and in the nose-out or nose-in positions. For both horizontal and vertical responses, gains were dependent on both the frequency of stimulation and the directions and relative amplitudes of the angular and linear motion components. When subjects were positioned nose-out, the angular and linear stimuli produced synergistic interactions, with the IVOR driving the eyes in the same direction as the aVOR. Gains increased with increasing frequency, consistent with an addition of broad-band aVOR and high-pass IVOR components. When subjects were nose-in, angular and linear stimuli generated eye movements in opposing directions, and gains declined with increasing frequency, consistent with a subtraction of the IVOR from the aVOR. This response pattern was identical for horizontal and vertical eye movements. aVOR and IVOR interactions were also assessed when the two components acted in orthogonal response planes. By rotating the monkeys into the NU orientation, the aVOR acted primarily in the roll plane, generating torsional ocular responses, while the translational (IVOR) component generated horizontal or vertical ocular responses, depending on whether the head was oriented such that linear accelerations acted along the interaural or dorsoventral axes, respectively. Horizontal and vertical IVOR responses were negligible at 0.25 Hz and increased dramatically with increasing frequency. Comparison of the combined responses (UP and RD orientations) with the isolated aVOR (head-centered) and IVOR (NU orientation) responses, indicates that these VOR components sum in a linear fashion during complex head motion.

UI MeSH Term Description Entries
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008297 Male Males
D010037 Otolithic Membrane A gelatinous membrane overlying the acoustic maculae of SACCULE AND UTRICLE. It contains minute crystalline particles (otoliths) of CALCIUM CARBONATE and protein on its outer surface. In response to head movement, the otoliths shift causing distortion of the vestibular hair cells which transduce nerve signals to the BRAIN for interpretation of equilibrium. Otoconia,Otoliths,Statoconia,Membrane, Otolithic,Membranes, Otolithic,Otoconias,Otolith,Otolithic Membranes,Statoconias
D012027 Reflex, Vestibulo-Ocular A reflex wherein impulses are conveyed from the cupulas of the SEMICIRCULAR CANALS and from the OTOLITHIC MEMBRANE of the SACCULE AND UTRICLE via the VESTIBULAR NUCLEI of the BRAIN STEM and the median longitudinal fasciculus to the OCULOMOTOR NERVE nuclei. It functions to maintain a stable retinal image during head rotation by generating appropriate compensatory EYE MOVEMENTS. Vestibulo-Ocular Reflex,Reflex, Vestibuloocular,Reflexes, Vestibo-Ocular,Reflexes, Vestibuloocular,Reflex, Vestibulo Ocular,Reflexes, Vestibo Ocular,Vestibo-Ocular Reflexes,Vestibulo Ocular Reflex,Vestibuloocular Reflex,Vestibuloocular Reflexes
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys
D012665 Semicircular Canals Three long canals (anterior, posterior, and lateral) of the bony labyrinth. They are set at right angles to each other and are situated posterosuperior to the vestibule of the bony labyrinth (VESTIBULAR LABYRINTH). The semicircular canals have five openings into the vestibule with one shared by the anterior and the posterior canals. Within the canals are the SEMICIRCULAR DUCTS. Semi-Circular Canals,Canal, Semi-Circular,Canal, Semicircular,Semi Circular Canals,Semi-Circular Canal,Semicircular Canal

Related Publications

L Telford, and S H Seidman, and G D Paige
January 1977, ORL; journal for oto-rhino-laryngology and its related specialties,
L Telford, and S H Seidman, and G D Paige
March 2005, Physical review. E, Statistical, nonlinear, and soft matter physics,
L Telford, and S H Seidman, and G D Paige
January 1982, Experimental brain research,
L Telford, and S H Seidman, and G D Paige
February 1990, The Physiologist,
L Telford, and S H Seidman, and G D Paige
January 1991, Experimental brain research,
L Telford, and S H Seidman, and G D Paige
May 1992, Annals of the New York Academy of Sciences,
L Telford, and S H Seidman, and G D Paige
January 1977, ORL; journal for oto-rhino-laryngology and its related specialties,
L Telford, and S H Seidman, and G D Paige
July 1977, Archives of ophthalmology (Chicago, Ill. : 1960),
L Telford, and S H Seidman, and G D Paige
August 1993, German journal of ophthalmology,
Copied contents to your clipboard!