The action of carboxyl modifying reagents on the ryanodine receptor/Ca2+ release channel of skeletal muscle sarcoplasmic reticulum. 1996

W Feng, and V Shoshan-Barmatz
Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.

In this work we show that ryanodine binding to junctional sarcoplasmic reticulum (SR) membranes or purified ryanodine receptor (RyR) is inhibited in a time- and concentration-dependent fashion by prior treatment with the carboxyl reagent dicyclohexylcarbodiimide (DCCD). Exposure of the membrane-bound RyR to the water soluble carboxyl reagents 1-ethyl-3 (3-(dimethylamino) propyl carbodiimide (EDC) or N-ethyl-pheny-lisoxazolium-3'-sulfonate (WRK) only slightly affects their ryanodine binding capacity. The amphipathic reagent N-ethoxy cabonyl-2-ethoxy-1,2-dihydroquinaline (EEDQ) inhibited ryanodine binding at relatively high concentrations. DCCD-modification of the SR decreased the binding affinities of the RyR for ryanodine and Ca2+ by about 3- and 18-fold, respectively. The single channel activity of SR membranes modified with DCCD and then incorporated into planar lipid bilayers is very low (5-8%) in comparison to control membranes. Application of DCCD to either the myoplasmic (cis) or luminal (trans) side of the reconstituted unmodified channels resulted in complete inhibition of their single channel activities. Similar results were obtained with the water soluble reagent WRK applied to the myoplasmic, but not to the luminal side. The DCCD-modified non-active channel is re-activated by addition of ryanodine in the presence of 250 microM Ca2+ and is stabilized in a sub-conductance state. With caffeine, ryanodine re-activated the channel in the presence of 100 microM of Ca2+. The results suggest that a carboxyl residue(s) in the RyR is involved either in the binding of Ca2+, or in conformational changes that are produced by Ca2+ binding, and are required for the binding of ryanodine and the opening of the Ca2+ release channel.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004024 Dicyclohexylcarbodiimide A carbodiimide that is used as a chemical intermediate and coupling agent in peptide synthesis. (From Hawley's Condensed Chemical Dictionary, 12th ed) DCCD

Related Publications

W Feng, and V Shoshan-Barmatz
December 1995, The Journal of biological chemistry,
W Feng, and V Shoshan-Barmatz
September 1992, Molecular and cellular biochemistry,
Copied contents to your clipboard!