Power Doppler ultrasound evaluation of the shear rate and shear stress dependences of red blood cell aggregation. 1996

G Cloutier, and Z Qin, and L G Durand, and B G Teh
Laboratoire de Genie Biomedical, Institut de Recherches Cliniques de Montreal, Quebec, Canada. cloutig@ircm.umontreal.ca

The use of power Doppler ultrasound at 10 MHz is evaluated as a method to study the shear rate and the shear stress dependences of red blood cell aggregation. This evaluation was based on six in vitro experiments conducted in a 1.27-cm diameter tube under steady flow conditions. Porcine whole blood was circulated in the flow model at flow rates ranging between 125 to 1500 ml/min (mean shear rate across the tube ranging between 6 and 74 s-1). For each flow condition, the variation of the Doppler power across the tube and the velocity profile were measured by moving the Doppler sample volume across the tube diameter. For each radial position, the shear rate within the Doppler sample volume was also determined by considering the radial power pattern of the ultrasound beam. To estimate the shear stress within the Doppler sample volume, the apparent viscosity of blood samples withdrawn from the flow model was measured for each experiment. The variation of the Doppler power as a function of the shear rate within the sample volume showed a rapid reduction of the power between 1 and 5 s-1, a transition region between 5 and 10 s-1, and a very slow reduction beyond 10 s-1. Little variation of the Doppler power was measured for shear stress higher than 2 dyn/cm2. The maximum Doppler power for all flow rates was usually found near the center of the tube. Based on the ultrasonic scattering models, which predict that the Doppler power is related to the volume square of the scatterers, the method described in the present study showed a very high sensitivity to the presence of red blood cell aggregation for shear rates below 10 s-1.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004903 Erythrocyte Aggregation The formation of clumps of RED BLOOD CELLS under low or non-flow conditions, resulting from the attraction forces between the red blood cells. The cells adhere to each other in rouleaux aggregates. Slight mechanical force, such as occurs in the circulation, is enough to disperse these aggregates. Stronger or weaker than normal aggregation may result from a variety of effects in the ERYTHROCYTE MEMBRANE or in BLOOD PLASMA. The degree of aggregation is affected by ERYTHROCYTE DEFORMABILITY, erythrocyte membrane sialylation, masking of negative surface charge by plasma proteins, etc. BLOOD VISCOSITY and the ERYTHROCYTE SEDIMENTATION RATE are affected by the amount of erythrocyte aggregation and are parameters used to measure the aggregation. Erythrocyte Aggregation, Intravascular,Agglutination, Intravascular,Intravascular Agglutination,Intravascular Erythrocyte Aggregation,Rouleaux Formation, Erythrocyte,Agglutinations, Intravascular,Aggregation, Erythrocyte,Aggregation, Intravascular Erythrocyte,Aggregations, Erythrocyte,Aggregations, Intravascular Erythrocyte,Erythrocyte Aggregations,Erythrocyte Aggregations, Intravascular,Erythrocyte Rouleaux Formation,Erythrocyte Rouleaux Formations,Formation, Erythrocyte Rouleaux,Formations, Erythrocyte Rouleaux,Intravascular Agglutinations,Intravascular Erythrocyte Aggregations,Rouleaux Formations, Erythrocyte
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D018608 Ultrasonography, Doppler Ultrasonography applying the Doppler effect, with frequency-shifted ultrasound reflections produced by moving targets (usually red blood cells) in the bloodstream along the ultrasound axis in direct proportion to the velocity of movement of the targets, to determine both direction and velocity of blood flow. (Stedman, 25th ed) Doppler Ultrasonography,Doppler Ultrasound,Doppler Ultrasound Imaging,Doppler Ultrasound Imagings,Doppler Ultrasounds,Imaging, Doppler Ultrasound,Imagings, Doppler Ultrasound,Ultrasound Imaging, Doppler,Ultrasound Imagings, Doppler,Ultrasound, Doppler,Ultrasounds, Doppler

Related Publications

G Cloutier, and Z Qin, and L G Durand, and B G Teh
February 2010, Journal of biomechanics,
G Cloutier, and Z Qin, and L G Durand, and B G Teh
July 1999, Journal of vascular surgery,
G Cloutier, and Z Qin, and L G Durand, and B G Teh
January 2007, Biorheology,
G Cloutier, and Z Qin, and L G Durand, and B G Teh
September 2009, The Review of scientific instruments,
G Cloutier, and Z Qin, and L G Durand, and B G Teh
June 1968, The Journal of clinical investigation,
G Cloutier, and Z Qin, and L G Durand, and B G Teh
January 1997, Biorheology,
G Cloutier, and Z Qin, and L G Durand, and B G Teh
March 1972, Biophysical journal,
G Cloutier, and Z Qin, and L G Durand, and B G Teh
January 1997, Clinical hemorheology and microcirculation,
G Cloutier, and Z Qin, and L G Durand, and B G Teh
January 2016, Clinical hemorheology and microcirculation,
Copied contents to your clipboard!