Human insulin gene expression in transgenic mice: mutational analysis of the regulatory region. 1996

J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
Institut Cochin de Génétique Moléculaire, Paris, France.

A mini-human insulin gene and four derivatives mutated at several regions potentially involved in the regulation of gene expression were used to generate transgenic mouse lines. The effect of these mutations on the efficiency of gene expression and cell specificity was studied using three approaches: (1) Northern blot analysis using total RNA from pancreas and other organs, (2) radioimmunoassay to detect the human C-peptide in urine samples, and (3) immunocytochemistry of pancreas sections to examine whether expression of the transgene was still specifically expressed in beta-cells. Mutation of the cis-acting elements located between -238 and -206 (GCII and CTII motifs) resulted in a strong decrease of gene expression in the pancreas of transgenic mice, but it did not lead to complete extinction of the transgene expression. This region alone (-255/-202), when linked to the minimal Herpes simplex virus thymidine kinase gene (tk) promoter, failed to activate chloramphenicol acetyltransferase (CAT) gene expression in transfected insulinoma cells, while it was activated by the equivalent region of the rat insulin I gene. On the contrary, mutation of the DNA motifs located between -109 and -75 (GCI and CTI) or between -323 and -297 (CTIII) did not significantly affect the level of the human insulin gene expression in transgenic mice. Replacement of the insulin promoter (-58/+l) by the tk promoter did not alter its level of expression in transgenic mice. In all instances, expression of the different transgenes remained localized in the islet beta-cells. Altogether, these results indicate that the GCII-CTII motif is an important regulatory element for efficient expression of the human insulin gene in vivo, although it alone does not allow gene expression as it would require the association of other elements.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007340 Insulinoma A benign tumor of the PANCREATIC BETA CELLS. Insulinoma secretes excess INSULIN resulting in HYPOGLYCEMIA. Adenoma, beta-Cell,Insuloma,beta-Cell Tumor,Adenoma, beta Cell,Adenomas, beta-Cell,Insulinomas,Insulomas,Tumor, beta-Cell,Tumors, beta-Cell,beta Cell Tumor,beta-Cell Adenoma,beta-Cell Adenomas,beta-Cell Tumors
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer

Related Publications

J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
January 1987, Comptes rendus des seances de la Societe de biologie et de ses filiales,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
January 1986, Nature,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
April 1986, Proceedings of the National Academy of Sciences of the United States of America,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
June 1999, The Journal of investigative dermatology,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
September 1991, Nucleic acids research,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
February 1991, The EMBO journal,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
April 1995, Proceedings of the National Academy of Sciences of the United States of America,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
August 2001, Transgenic research,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
November 1991, Nucleic acids research,
J M Itier, and P Douhet, and P Desbois, and R L Joshi, and F Dandoy-Dron, and J Jami, and D Bucchini
April 1991, Molecular and cellular biology,
Copied contents to your clipboard!