Ca(2+)-induced Ca2+ release activates K+ currents by a cyclic GMP-dependent mechanism in single gastric smooth muscle cells. 1996

D B Duridanova, and H S Gagov, and K K Boev
Institute of Biophysics, Bulgarian Academy of Sciences, Sofia. DESSYBD@IPH.BIO.ACAD.BG

The participation of sarcoplasmic reticulum Ca2+ release channels in the activation of Ca(2+)-sensitive K+ currents (IK(Ca)) by cyclic dibutyryl GMP was investigated in smooth muscle cells from the circular layer of guinea-pig gastric fundus. All experiments were performed in the presence of 3 microM nicardipine into the bath and low Ca2+ buffering capacity of the pipette-filling solution (pCa 7.4). Ruthenium red (10 microM) as well as its combination with 10 microM heparin abolished the cyclic GMP-induced activation of IK(Ca), while 10 microM heparin remained ineffective. Ryanodine (10 microM) and the subsequently added 1 microM thapsigargin induced a relatively small increase in IK(Ca) amplitudes. The addition of 10 microM ryanodine to 1 microM thapsigargin-containing bath solution caused a vast increase in IK(Ca). It is hypothesyzed that protein kinase G-induced vectorial Ca2+ flux from the cell bulk and sarcoplasmic reticulum Ca2+ stores toward the plasma membrane is realized by a spontaneous Ca(2+)-induced Ca2+ release from a superficially situated Ca2+ store.

UI MeSH Term Description Entries
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

D B Duridanova, and H S Gagov, and K K Boev
July 1985, Science (New York, N.Y.),
D B Duridanova, and H S Gagov, and K K Boev
April 2000, European journal of pharmacology,
D B Duridanova, and H S Gagov, and K K Boev
April 1994, The Journal of physiology,
D B Duridanova, and H S Gagov, and K K Boev
June 1996, European journal of pharmacology,
D B Duridanova, and H S Gagov, and K K Boev
September 1993, The American journal of physiology,
D B Duridanova, and H S Gagov, and K K Boev
August 1992, The American journal of physiology,
D B Duridanova, and H S Gagov, and K K Boev
March 1993, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
D B Duridanova, and H S Gagov, and K K Boev
August 1988, Biochemical Society transactions,
D B Duridanova, and H S Gagov, and K K Boev
January 1989, Journal of hypertension,
Copied contents to your clipboard!