Mechanism of telomerase induction during T cell activation. 1996

A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
Geron Corporation, Menlo Park, California 94025, USA.

The progressive shortening of the ends of chromosomes (telomeres) during cell division may serve as a mitotic clock for replicative senescence. Telomerase, a ribonucleoprotein which synthesizes telomeric DNA and maintains telomere length, is absent from most normal somatic cells but is expressed in immortal cells. Low levels of telomerase activity have been detected in peripheral blood mononuclear cells (PBMC) and hematopoietic cells and an increase in telomerase activity during T cell activation has recently been reported. In this study, we show that the increase in telomerase activity during T cell activation was transient and did not prevent the loss of telomeres in long-term T cell cultures. Analysis of the mechanism of telomerase induction showed that the increase in telomerase activity was accompanied by an increase in the levels of hTR, the RNA component of human telomerase. Moreover, telomerase induction occurred in the presence of aphidicolin, indicating that DNA synthesis was not required. Increased telomerase expression was observed when PBMC were activated with phorbol myristate acetate (PMA) and ionomycin, indicating that it was independent of early transmembrane signals. It was, however, linked to the T cell signal transduction pathway, as inhibiting protein kinase C with bisindolylmaleimide prevented the increase in telomerase activity.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
April 1984, European journal of immunology,
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
July 2016, Nature immunology,
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
June 1992, European journal of immunology,
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
May 1999, Journal of immunology (Baltimore, Md. : 1950),
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
October 1991, Journal of immunology (Baltimore, Md. : 1950),
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
August 2001, Circulation research,
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
December 2003, Nature immunology,
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
January 1986, Gene amplification and analysis,
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
March 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
A G Bodnar, and N W Kim, and R B Effros, and C P Chiu
January 1998, Immunological investigations,
Copied contents to your clipboard!