Translational control: a general mechanism for gene regulation during T cell activation. 1998

J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
Basel Institute for Immunology, Switzerland. jasanz@cnb.uam.es

Distributional changes of individual mRNAs between free ribonucleoprotein particles (mRNP) and ribosome-bound transcripts are used to assess translational control. Simultaneous analysis of many mRNA species is required to estimate the overall contribution of translation to the regulation of gene expression. To this purpose, total cytoplasmic RNA was fractionated in sucrose step gradients and poly(A)+ RNA was prepared from mRNP and ribosome-bound fractions. Since direct, simultaneous analysis of a profusion of mRNAs is not feasible, distribution of their in vitro translation products was examined after separation in 2-dimensional gels, followed by computer-based analysis of autoradiographs. When this analysis was applied to antigenically stimulated T cells, 36% of in vitro translation products showed a greater than 10-fold increase in intensity, suggesting transcriptional activation of the corresponding mRNAs. In comparison, 7.9% of individual mRNAs (54 of 685 species) were translationally activated. They were redistributed from free mRNP to ribosome-associated fractions; 4.7% (32 species) were translationally repressed, as indicated by the opposite pattern. The differential recruitment of 12.6% of mRNA species demonstrates specificity and the general significance of translational control during T cell activation, which implies that translation may play a similar role in regulating gene expression in a variety of physiological processes.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
January 2016, Journal of immunology (Baltimore, Md. : 1950),
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
January 2022, Frontiers in molecular biosciences,
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
May 2005, BMC genomics,
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
August 2016, Nucleic acids research,
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
April 1984, European journal of immunology,
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
October 1992, The Journal of biological chemistry,
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
October 1996, Experimental cell research,
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
January 2018, Frontiers in genetics,
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
October 2010, Molecular cell,
J A Garcia-Sanz, and W Mikulits, and A Livingstone, and I Lefkovits, and E W Müllner
December 2004, International immunology,
Copied contents to your clipboard!