Tracheal pressure triggering a demand-flow continuous positive airway pressure system decreases patient work of breathing. 1996

G Messinger, and M J Banner
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, USA.

OBJECTIVE Triggering a ventilator "ON" at the carinal end of the endotracheal tube decreases imposed work of breathing by bypassing the resistance imposed by the breathing circuit and the endotracheal tube. We compared work of breathing during spontaneous ventilation between three methods of triggering the ventilator "ON": a) conventional pressure triggering from inside the ventilator; b) flow-by triggering; or c) tracheal pressure triggering at the carinal end of the endotracheal tube. We hypothesized that the work of breathing would be substantially decreased with tracheal pressure triggering compared with conventional pressure and flow-by methods in patients receiving continuous positive airway pressure. METHODS Clinical, prospective study. METHODS University teaching hospital. METHODS Fourteen adults diagnosed with acute respiratory failure. METHODS All patients were breathing spontaneously at an FIO2 of 0.30 to 0.40 and received 5 cm H2O of continuous positive airway pressure. Three different methods of triggering the ventilator while set in the continuous positive airway pressure mode were administered in random order. RESULTS Real-time measurements of esophageal pressure and tidal volume were integrated with a respiratory monitor (CP-100, Bicore, Riverside, CA) that uses the Campbell diagram to calculate total work of breathing. Imposed work of breathing was calculated by integrating tidal volume with the pressure at the carinal end of the endotracheal tube. Physiologic work of breathing was calculated by subtracting imposed work of breathing from the total work of breathing. Breathing frequency, the index of rapid shallow breathing (breathing frequency/tidal volume), peak inspiratory flow rate demand, exhaled minute ventilation, and the duration of respiratory muscle contraction assessed by the ratio of inspiratory time to total cycle time were also measured. Data were analyzed by Friedman's repeated-measures analysis of variance on ranks. Alpha was set at .05 for statistical significance. Imposed work of breathing decreased to approximately zero during tracheal pressure triggering. As a result, total work of breathing decreased by approximately 40% compared with the flow-by and conventional methods. During tracheal pressure triggering only, airway pressure increased above baseline pressure to approximately 11 cm H2O, which resembled pressure-support ventilation. Also, during tracheal pressure triggering, tidal volume and peak inspiratory flow rate were significantly increased, while the pressure-time product and the index of rapid shallow breathing were significantly decreased. Hemodynamic status and oxygen saturation were not clinically affected. CONCLUSIONS The tracheal pressure triggering of a demand-flow continuous positive airway pressure system creates an effect similar to pressure-support ventilation that significantly decreases imposed work of breathing and, thus, total work of breathing. We recommend moving the triggering site of the ventilator to the carinal end of the endotracheal tube.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011446 Prospective Studies Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group. Prospective Study,Studies, Prospective,Study, Prospective
D012131 Respiratory Insufficiency Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed) Acute Hypercapnic Respiratory Failure,Acute Hypoxemic Respiratory Failure,Hypercapnic Acute Respiratory Failure,Hypercapnic Respiratory Failure,Hypoxemic Acute Respiratory Failure,Hypoxemic Respiratory Failure,Respiratory Depression,Respiratory Failure,Ventilatory Depression,Depressions, Ventilatory,Failure, Hypercapnic Respiratory,Failure, Hypoxemic Respiratory,Failure, Respiratory,Hypercapnic Respiratory Failures,Hypoxemic Respiratory Failures,Respiratory Failure, Hypercapnic,Respiratory Failure, Hypoxemic,Respiratory Failures
D003422 Critical Care Health care provided to a critically ill patient during a medical emergency or crisis. Intensive Care,Intensive Care, Surgical,Surgical Intensive Care,Care, Critical,Care, Intensive,Care, Surgical Intensive
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

G Messinger, and M J Banner
November 1989, Critical care medicine,
G Messinger, and M J Banner
January 1985, Critical care medicine,
G Messinger, and M J Banner
September 1990, Critical care medicine,
G Messinger, and M J Banner
April 1986, Schweizerische medizinische Wochenschrift,
Copied contents to your clipboard!