Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. 1996

R Iyer, and R F Hamilton, and L Li, and A Holian
Department of Internal Medicine, University of Texas Medical School, Houston 77030, USA.

Exposure to silica dust can result in lung inflammation that may progress to fibrosis, for which there is no effective clinical treatment. The mechanisms involved in the development of pulmonary silicosis have not been well defined; however, most current evidence implicates a central role for alveolar macrophages (AM) in this process. We propose that the fibrotic potential of a particulate depends upon its ability to cause apoptosis in AM. In this study, human AM were treated with fibrogenic, poorly fibrogenic, and nonfibrogenic model particulates, such as silica (133 micrograms/ml), amorphous silica (80 micrograms/ml), and titanium dioxide (60 micrograms/ml), respectively. Cell were treated with these particulates in vitro for 6 and 24 hr and examined for apoptosis by morphological analysis, DNA fragmentation, and levels of cytosolic histone-bound DNA fragments (cell death ELISA assays). Treatment with silica resulted in morphological changes typical of apoptotic cells, enhanced DNA fragmentation (a characteristic feature of programmed cell death), and significant alveolar macrophage apoptosis as observed by cell death ELISA assays. In contrast, amorphous silica and titanium dioxide demonstrated no significant apoptotic potential. To elucidate the possible mechanism by which silica causes apoptosis, we investigated the role of the scavenger receptor (SR) in silica-induced apoptosis. Cells were pretreated with and without SR ligand binding inhibitor, polyinosinic acid (poly(I), 500 micrograms/ml), for 10 min prior to silica treatment. Pretreatment with poly(I) resulted in complete inhibition of silica-induced apoptosis as measured by cell death ELISA. Further, we examined the involvement of interleukin-converting enzyme (ICE) in silica-mediated apoptosis using an ICE inhibitor, Z-Val-Ala-Asp-fluoromethyl ketone. Z-Val-Ala-Asp-fluoromethyl ketone inhibited silica-induced apoptosis and IL-1 beta release. These results suggest that fibrogenic particulates, such as silica, caused apoptosis of alveolar macrophages and that this apoptotic potential of fibrogenic particulates may be a critical factor in initiating an inflammatory response resulting in fibrosis. Additionally, silica-induced apoptosis of alveolar macrophages may be due to the interaction of silica particulates with the SR, initiating one or a number of signaling pathways involving ICE, ultimately leading to apoptosis.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

R Iyer, and R F Hamilton, and L Li, and A Holian
October 1997, The American journal of physiology,
R Iyer, and R F Hamilton, and L Li, and A Holian
July 1988, The American review of respiratory disease,
R Iyer, and R F Hamilton, and L Li, and A Holian
February 1996, Nihon rinsho. Japanese journal of clinical medicine,
R Iyer, and R F Hamilton, and L Li, and A Holian
July 2004, Toxicological sciences : an official journal of the Society of Toxicology,
R Iyer, and R F Hamilton, and L Li, and A Holian
January 2001, American journal of physiology. Lung cellular and molecular physiology,
R Iyer, and R F Hamilton, and L Li, and A Holian
May 2021, Environmental science and pollution research international,
R Iyer, and R F Hamilton, and L Li, and A Holian
December 1994, Pharmaceutical research,
R Iyer, and R F Hamilton, and L Li, and A Holian
March 2011, The Journal of biological chemistry,
R Iyer, and R F Hamilton, and L Li, and A Holian
March 1998, Environmental health perspectives,
Copied contents to your clipboard!