Mono-ADP-ribosylation: a reversible posttranslational modification of proteins. 1996

I J Okazaki, and J Moss
Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Mono-ADP-ribosyltransferase activity has been detected in numerous vertebrate tissues and transferase cDNAs from a few species have recently been cloned. In vitro ADP-ribosylation has been demonstrated with diverse substrates such as phosphorylase kinase, actin, and Gs alpha resulting in the alteration of substrate function. ADP-ribosylation of endogenous target proteins has been observed in chicken heterophils, rat brain, and human platelets, and integrin alpha 7 was found to be the endogenous substrate of the GPI-anchored rabbit skeletal muscle transferase. The reversibility of ADP-ribosylation is made possible by ADP-ribosylarginine hydrolases which have been isolated and cloned from rodent and human tissues. The transferases and hydrolases could in principle form an intracellular ADP-ribosylation regulatory cycle. In the case of the skeletal muscle transferases, however, processing of ADP-ribosylated integrin alpha 7 is carried out by phosphodiesterases and possibly phosphatases (Fig. 1). Most bacterial toxin and eukaryotic mono-ADP-ribosyltransferases, and perhaps other NAD-utilizing enzymes such as the RT6 family of proteins, share a common catalytic-site structure despite a lack of overall sequence identity. The transferases that have been studied thus far possess a critical glutamic acid and other amino acids at the catalytic cleft which function to position NAD for nucleophilic attack at the N-glycosidic linkage for either ADP-ribose transfer or NAD hydrolysis. The amino acid differences among transferases at the active site may reflect different catalytic mechanisms of ADP-ribosylation or may be required for accommodating the different ADP-ribose acceptor molecules.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D036002 ADP Ribose Transferases Enzymes that transfer the ADP-RIBOSE group of NAD or NADP to proteins or other small molecules. Transfer of ADP-ribose to water (i.e., hydrolysis) is catalyzed by the NADASES. The mono(ADP-ribose)transferases transfer a single ADP-ribose. POLY(ADP-RIBOSE) POLYMERASES transfer multiple units of ADP-ribose to protein targets, building POLY ADENOSINE DIPHOSPHATE RIBOSE in linear or branched chains. ADP-Ribosyltransferase,Mono(ADP-Ribose) Transferases,NAD(P)(+)-Arginine ADP-Ribosyltransferase,NAD+ ADP-Ribosyltransferase,ADP Ribose Transferase,ADPRT,ADPRTs,ART Transferase,ART Transferases,ARTase,ARTases,Mono ADP-ribose Transferases,Mono ADPribose Transferase,Mono ADPribose Transferases,Mono(ADP-Ribose) Transferase,Mono(ADP-Ribosyl)transferase,Mono(ADPribosyl)transferase,Mono-ADP-Ribosyltransferase,MonoADPribosyltransferase,NAD ADP-Ribosyltransferase,NAD(+)-L-arginine ADP-D-ribosyltransferase,NAD-Agmatine ADP-Ribosyltransferase,NAD-Arginine ADP-Ribosyltransferase,NADP-ADPRTase,NADP-Arginine ADP-Ribosyltransferase,ADP Ribosyltransferase,ADP-Ribosyltransferase, NAD,ADP-Ribosyltransferase, NAD+,ADP-Ribosyltransferase, NAD-Agmatine,ADP-Ribosyltransferase, NAD-Arginine,ADP-Ribosyltransferase, NADP-Arginine,ADP-ribose Transferases, Mono,ADPribose Transferase, Mono,ADPribose Transferases, Mono,Mono ADP Ribosyltransferase,Mono ADP ribose Transferases,NAD ADP Ribosyltransferase,NAD Agmatine ADP Ribosyltransferase,NAD Arginine ADP Ribosyltransferase,NAD+ ADP Ribosyltransferase,NADP ADPRTase,NADP Arginine ADP Ribosyltransferase,Ribose Transferase, ADP,Ribose Transferases, ADP,Transferase, ADP Ribose,Transferase, ART,Transferase, Mono ADPribose,Transferases, ADP Ribose,Transferases, ART,Transferases, Mono ADP-ribose,Transferases, Mono ADPribose

Related Publications

I J Okazaki, and J Moss
December 1985, Biochemistry,
I J Okazaki, and J Moss
December 2017, The FEBS journal,
I J Okazaki, and J Moss
January 2015, Current topics in microbiology and immunology,
I J Okazaki, and J Moss
June 2021, Experimental and therapeutic medicine,
I J Okazaki, and J Moss
January 1982, Advances in enzyme regulation,
I J Okazaki, and J Moss
April 2013, Nature structural & molecular biology,
I J Okazaki, and J Moss
October 1977, European journal of biochemistry,
I J Okazaki, and J Moss
June 2019, Nucleic acids research,
I J Okazaki, and J Moss
February 1988, Tsitologiia,
I J Okazaki, and J Moss
April 2000, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!