Modulation of the cytochrome P450 system as a mechanism of chemoprotection. 1996

C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
University of Dundee, Ninewells Hospital & Medical School.

The cytochrome P450-dependent mono-oxygenase system has evolved as one of our primary defences against toxic chemicals present in our environment. This multi-enzyme system functions as an adaptive response to environmental challenge in that exposure to specific toxic agents induces the expression of cytochrome P450 isozymes active in their metabolism. In most cases, such metabolism leads to an increased rate of chemical detoxification, but in certain cases it can also lead to an increased rate of chemical activation to toxic products. The induction of cytochrome P450s leading to cytoprotection is a major mechanism of chemoprotection, and it is well documented that this pathway prevents a large number of toxic reactions. Incredibly, despite the importance of this metabolic pathway, the effects of a wide range of chemoprotective agents with different mechanisms of action on the expression of specific cytochrome P450 isozymes remains poorly understood. In this chapter, we discess the ability of different chemical compounds to modulate cytochrome P450 both at the transcriptional and post-transcriptional levels, in a way which affects its ability to metabolize or detoxify chemical carcinogens.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016588 Anticarcinogenic Agents Agents that reduce the frequency or rate of spontaneous or induced tumors independently of the mechanism involved. Anti-Carcinogenic Agents,Anti-Carcinogenic Drugs,Anti-Carcinogenic Effect,Anti-Carcinogenic Effects,Anticarcinogenic Drugs,Anticarcinogenic Effect,Anticarcinogenic Effects,Anticarcinogens,Agents, Anti-Carcinogenic,Agents, Anticarcinogenic,Anti Carcinogenic Agents,Anti Carcinogenic Drugs,Anti Carcinogenic Effect,Anti Carcinogenic Effects,Drugs, Anti-Carcinogenic,Drugs, Anticarcinogenic,Effect, Anti-Carcinogenic,Effect, Anticarcinogenic,Effects, Anti-Carcinogenic,Effects, Anticarcinogenic

Related Publications

C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
June 2015, Oncotarget,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
January 2009, Neuro endocrinology letters,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
May 2010, Chemico-biological interactions,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
October 1994, Transplantation proceedings,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
January 2013, Biochemistry,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
October 1993, American journal of respiratory cell and molecular biology,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
April 1993, Molecular pharmacology,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
June 2022, Chemical research in toxicology,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
January 2018, Medicinal chemistry,
C R Wolf, and A Mahmood, and C J Henderson, and R McLeod, and M M Manson, and G E Neal, and J D Hayes
September 2023, The Journal of biological chemistry,
Copied contents to your clipboard!