Detection of PCB adducts by the 32P-postlabeling technique. 1996

M R McLean, and L W Robertson, and R C Gupta
Department of Preventive Medicine and Environmental Health, University of Kentucky, Lexington 40536-0305, USA.

The purpose of this study was to determine whether lower chlorinated biphenyls would be bioactivated to electrophilic metabolites by microsomes alone or in combination with peroxidase. Monochloro- and dichlorobiphenyls were incubated with liver microsomes of rats treated with phenobarbital and beta-naphthoflavone, an NADPH-regenerating system, and deoxyguanosine 3'-monophosphate (dGp). The resultant adducts were analyzed by 32P-postlabeling either following microsomal incubation alone ("preoxidized") or coupled with subsequent oxidation with horseradish peroxidase/H2O ("oxidized"). The incubation of 4-monochlorobiphenyl (4-MCB) resulted in the formation of two minor adducts by microsomal activation alone. However, the oxidized sample showed two additional major adducts. Formation of the latter adducts was almost completely (> 80%) inhibited when the oxidation reaction was performed in the presence of ascorbic acid. The other test mono- and dichlorobiphenyls also formed 1-3 major adducts. Compared with microsomal activation alone, these adducts were enhanced after the oxidation reaction or detected only in the oxidized samples. These data suggest that (1) some adducts of the lower chlorinated biphenyls are derived from arene oxides and (2) many adducts may be formed by metabolism of the parent compounds to catechol and p-hydroquinone species, which are oxidized to semiquinones and/or quinones. The involvement of quinones and/or semiquinones was supported by UV/vis spectroscopic measurements, which showed that metabolites of 4-MCB can be oxidized to products with spectra characteristic of quinones. These data raise the possibility that lower chlorinated biphenyls may be genotoxic and may explain the fact that commercial polychlorinated biphenyl mixtures are complete rodent carcinogens.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D011078 Polychlorinated Biphenyls Industrial products consisting of a mixture of chlorinated biphenyl congeners and isomers. These compounds are highly lipophilic and tend to accumulate in fat stores of animals. Many of these compounds are considered toxic and potential environmental pollutants. PCBs,Polychlorinated Biphenyl,Polychlorobiphenyl Compounds,Biphenyl, Polychlorinated,Biphenyls, Polychlorinated,Compounds, Polychlorobiphenyl
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001713 Biphenyl Compounds Whitish aromatic crystalline organic compounds made up of two conjoined BENZENE rings. Compounds, Biphenyl

Related Publications

M R McLean, and L W Robertson, and R C Gupta
January 1990, Basic life sciences,
M R McLean, and L W Robertson, and R C Gupta
August 1988, Carcinogenesis,
M R McLean, and L W Robertson, and R C Gupta
January 2020, Methods in molecular biology (Clifton, N.J.),
M R McLean, and L W Robertson, and R C Gupta
January 2005, Methods in molecular biology (Clifton, N.J.),
M R McLean, and L W Robertson, and R C Gupta
July 1992, Cancer letters,
M R McLean, and L W Robertson, and R C Gupta
January 2007, Nature protocols,
M R McLean, and L W Robertson, and R C Gupta
January 1996, Carcinogenesis,
M R McLean, and L W Robertson, and R C Gupta
February 1997, Carcinogenesis,
M R McLean, and L W Robertson, and R C Gupta
March 1993, Environmental health perspectives,
Copied contents to your clipboard!